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Abstract—Human face features can be used to determine 

individual identity as well as demographic information like gender 

and race.  However, the extent to which black-box commercial face 

recognition algorithms (CFRAs) use gender and race features to 

determine identity is poorly understood despite increasing 

deployments by government and industry.  In this study, we 

quantified the degree to which gender and race features influenced 

face recognition similarity scores between different people, i.e. 

non-mated scores.  We ran this study using five different CFRAs 

and a sample of 333 diverse test subjects.  As a control, we 

compared the behavior of these non-mated distributions to a 

commercial iris recognition algorithm (CIRA).  Confirming prior 

work, all CFRAs produced higher similarity scores for people of 

the same gender and race, an effect known as “broad 

homogeneity”.  No such effect was observed for the CIRA.  Next, 

we applied principal components analysis (PCA) to similarity 

score matrices.  We show that some principal components (PCs) of 

CFRAs cluster people by gender and race, but the majority do not. 

Demographic clustering in the PCs accounted for only 10% of the 

total CFRA score variance. No clustering was observed for the 

CIRA.  This demonstrates that, although CFRAs use some gender 

and race features to establish identity, most features utilized by 

current CFRAs are unrelated to gender and race, similar to the 

iris texture patterns utilized by the CIRA.  Finally, reconstruction 

of similarity score matrices using only PCs that showed no 

demographic clustering reduced broad homogeneity effects, but 

also decreased the separation between mated and non-mated 

scores.  This suggests it’s possible for CFRAs to operate on 

features unrelated to gender and race, albeit with somewhat lower 

recognition accuracy, but that this is not the current commercial 

practice. 

 
Index Terms—Face recognition, iris recognition, technology 

social factors, performance evaluation 

I. INTRODUCTION 

URING the period from 2015 to 2020, face recognition (FR) 

experienced enormous increases in commercial 

investment, public interest, and public facing deployments.  In 

2014, convolutional neural nets applied to FR, achieved near 
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human performance for the first time [1] .  By 2016, at least two 

Fortune 500 companies began offering commercial facial 

recognition algorithms (CFRAs) via their cloud platforms [2] 

[3] and by the end of 2019, technology evaluations of face 

recognition algorithms by the U.S. National Institute of 

Standards and Technology (NIST) received 189 submissions 

from 99 distinct developers [4] (compared to 46 algorithms 

from 13 developers submitted for testing in their iris recognition 

(IR) program [5].  These commercial investments have spurred 

the deployment of numerous public facing services that 

leverage CFRAs for tasks such as boarding planes [6], finding 

suspected criminals [7], and buying beer [8].  There are 

numerous motivations for this growing public adoption, 

including the notion that human faces form a basis of identity 

for other humans and that humans perform face recognition on 

a daily basis, meaning most are familiar with the concept of FR.  

However, recent reports have shown that CFRA performance 

can vary for people based on their demographic group 

membership [4] [9] [10].  One type of demographic variation 

observed is the tendency of CFRAs to assign greater similarity 

scores to different individuals that share gender and race 

categories.  For example, comparing images of women to 

images of other women produces higher scores relative to 

scores produced when images of women are compared to 

images of men, an effect termed “broad homogeneity” [4] [9].  

While intuitive based on human perception, this property of 

CFRAs can create undesirable behavior in many identification 

scenarios.  For example, if an identification gallery, such as a 

most-wanted list, skews predominantly male, then men who are 

not in the gallery are more likely to be misidentified when 

searched against that gallery than women, solely on the basis of 

their male facial features. 

In this study, we assess demographic variation in the 

performance of five CFRAs and one commercial iris 

recognition algorithm (CIRA).  We first assess broad 

homogeneity effects, documented in [9], in our sample of 
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algorithms, and then use a novel technique to quantify and 

compare these effects across black-box commercial algorithms. 

II. BACKGROUND AND SIGNIFICANCE 

A. Face Features 

The human face has many features useful for identity.  For 

example, intercanthal width is the distance between the inner 

portion of the eyes, and morphological nose width is the 

distance between the exterior nostrils [11].  The relative 

positions of some of these facial landmarks are shared by 

members of demographic groups.  For example, the average 

male nose is shorter, broader, and more projecting relative to 

females [12] [13] and people of Sub-Saharan African ancestry 

tend to have broader noses than people of European and East 

Asian ancestry [14] [15].  However, other face features and their 

combinations are unlikely to be associated with gender or race.  

For instance, genetic disorders can be associated to specific 

common changes in face shape [16] [17] [18].  Likewise, 

features thought to be formed stochastically during 

development, such as iris texture utilized by iris recognition 

(IR) algorithms are unique not only to specific individuals, but 

to each eye [19].  Indeed, recent work indicates that gender and 

race features in face images can be manipulated while identity 

information relevant for face recognition is maintained [20] 

[21]. 

B. The Consequences of Selecting Features Related to 

Protected Demographic Groups 

All biometric samples inevitably share some common 

patterns.  Biometric samples come from biological systems that 

may share some features due to common genetics, environment, 

or simply due to chance.  When two biometric samples from 

different people are similar enough, biometric algorithms may 

label the two samples as matching, producing a false match.  

This can cause misidentifications, such as when the fingerprints 

from a 37 year old lawyer living in the U.S. state of Oregon, 

Brendan Mayfield, were incorrectly matched to a 32 year old 

Algerian man living in France, Daoud Ouhnane [22] [23]. 

Similarities in facial features are related to demographics, 

including gender and race (Section II.A).  However, gender and 

race similarity alone are typically not enough to increase CFRA 

false match rates to unacceptable levels in most applications.  

Consequently, use of features related to gender and race has not 

been seen as a problem in the machine vision community.  

Nonetheless, small increases in one-to-one false match rate can 

lead to appreciable gains in one-to-N false positive 

identification rates, particularly when matching against large 

galleries [4].  This raises legitimate concerns about the fairness 

of CFRAs when matching against homogeneous galleries in 

law enforcement applications [24].  It is therefore important to 

understand the degree to which gender and race determine 

similarity scores produced by CFRAs. 

C. Evaluation of Commercial Algorithms versus Academic 

Algorithms 

Generally, FR algorithms can be categorized as either 

commercial or academic.  Much of the scientific literature, 

particularly around demographics in face recognition, focuses 

on academic algorithms [25] [26] [27].  The implementation 

details of academic algorithms are usually published and 

shared.  However, leading commercial FR algorithms have 

superior performance relative to available academic algorithms 

[4] and come with the legal, financial, and operational support 

offered by commercial entities.  Commercial face recognition 

algorithms are therefore used by industry and government to 

make real-world decisions [6] [7].  Consequently, the 

evaluation of commercial, not academic, algorithms should be 

paramount when discussing technology bias and fairness.  

However, unlike academic algorithms, commercial algorithms 

are “black-boxes”, meaning little is known about the face 

template structure they produce or the inner workings of the FR 

algorithm.  The only available information for evaluating 

commercial FR algorithm performance are the similarity scores 

they produce when comparing face images.  This makes it 

necessary to develop methods of exploring demographic 

differentials that rely only on these similarity scores, and not 

training, template data, or mechanistic algorithm insight. 

III. METHODS 

A. Dataset 

Data used in this study were collected during the 2018 DHS 

S&T Biometric Technology Rally [28].  Biometric samples 

were collected from 333 diverse test subjects on 11 different 

face and 5 iris biometric acquisition systems.  All acquisition 

systems were commercially available systems from commercial 

biometric companies, available in 2018. 

 
Fig. 1: : Number of volunteers by self-reported demographic race (B, Black or 

African American; W, White; O, all others) and gender (F, Female; M, Male). 

The test described in [28] produced 3,324 face and 1,414 left 

iris probe images (all devices failed to acquire images on some 

subjects).  For this study, these probe images were compared to 

galleries of 1,205 face images and 1,083 left iris images 

previously gathered from the same subjects over a six-year 

period from 2012-2018.  Five different CFRAs and one CIRA 

were used to independently generate biometric similarity 

scores.  In total, this operation produced 21,558,281 similarity 

scores which form the basis of this study.   All matching 

systems were commercially available systems from established 

biometric companies, available in 2019.   To comply with 

information sharing agreements between the test organizers and 

technology providers, all algorithm names are aliased in this 

report as “face1”, “face2”, “face3”, “face4”, “face5”, and “iris”.  
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Each algorithm produced an arbitrarily scaled similarity score 

for pairs of face or iris images.  Larger scores corresponded to 

a greater likelihood that the two images belong to the same 

subject. 

Demographic information, including race and gender, was 

self-reported by each of the 333 unique subjects (see Fig. 1).  

Most subjects in our sample self-identified as Black or African 

American, or White.  For this reason, comparisons of same 

gender and race versus different race and gender groups was 

restricted to these demographic groups. 

B. Analysis Techniques 

1) 99th Percentile Non-Mated Score 

Biometric false match rates are driven by the behavior of the 

tail of the non-mated distribution.  We quantified the 

characteristics of this tail using shifts in the 99th percentile 

score of the imposter distribution, similar to [9].  In Equation 1, 

𝒮99,𝑚 is the subject-specific 99th percentile non-mated score, 

𝐼(𝑛)(𝑚) is the ordered set of non-mated similarity scores for 

subject 𝑚, and 𝑛 = ⌈. 99 ∗ |𝐼|⌉. 

𝒮99,𝑚 = 𝐼(𝑛)(𝑚) (1) 

2) Principal Component Analysis 

The similarity scores described in Section III.A, were 

arranged into a matrix, per recognition algorithm, where each 

entry at row 𝑖 and column 𝑗 represented the average similarity 

score between subjects 𝑖 and 𝑗 for each of our 333 subjects.  All 

score matrices were symmetric, with the diagonal of each 

matrix corresponding to the average mated score for each 

subject.  To understand the individual variations with the 

strongest association to subject similarity, we performed 

principal components analysis (PCA) on the matrix produced 

by each algorithm.  PCA is a linear dimensionality reduction 

technique.  It can be used to transform high dimensional data 

into a series of principal components (PCs) in such a way that 

the highest level of variance is found on the first component, 

𝑃𝐶1.  Each subsequent 𝑃𝐶𝑘 is orthogonal to the preceding and 

explains less variance (𝜎1
2 >  𝜎2

2 > ⋯ >  𝜎𝑘
2).  At some PC 

number k the full or a sufficient amount of the cumulative 

variance (∑ 𝜎𝑘
2

𝑘 ) has been explained by the PCs.  The 

remaining 𝑛 − 𝑘 PCs can be discarded, thus accomplishing 

dimensionality reduction.  In this study, PC decomposition of 

each score matrix and subsequent operations were performed 

using built-in functions available in the R statistical 

programming language [29]. 

PCA allows score matrices of different biometric algorithms 

to be compared using common units of explained variance.  

Recent prior work in demographics has measured performance 

variation in face recognition algorithms by comparing score 

distributions, error rates at fixed thresholds, and area under 

ROC curves (AUC) [4] [9] [30].  However, scores of different 

algorithms are scaled arbitrarily and error rates depend 

critically on thresholds, which must be determined separately 

for each algorithm.  While AUC offers the ability to compare 

overall algorithm accuracy as a function of demographics, 

modern FR algorithms may make no errors on some datasets, 

producing uniform AUC (AUC = 1).  Our measure allows 

algorithm comparisons in the absence of errors. 
 

3) Demographic Clustering 

Each PC computed as described in Section III.B.2 

corresponds to a pattern of score variation across 333 subjects.  

The similarity of face features between subjects in our dataset 

determines CFRA similarity scores.  The PCs that explain the 

most variance for each algorithm correspond to the shared 

feature patterns that are most heavily weighted by each 

algorithm in determining similarity.  We assessed the degree of 

association of these features with gender and race by measuring 

the distribution of these groups across each PC.  Specifically, 

we measured the degree of demographic clustering by 

calculating a clustering index 𝐶𝑘 for each 𝑃𝐶𝑘 by taking the 

ratio of within group deviation from the mean to overall 

deviation from the mean across all subjects 𝑖 in our sample 

according to Equation 2, where 𝐷 is the set of subjects 

belonging to a specific demographic group and 𝑥𝑖 is the value 

for subject 𝑖 on the PC. 

𝐶𝑘 =  
∑ ∑ (𝑥𝑖 − 𝑥̅𝐷)2

𝑖∈𝐷𝐷

∑ (𝑥𝑖 − 𝑥̅)2
𝑖

 (2) 

We assessed whether the clustering index value for each 𝑃𝐶𝑘 

was statistically significant by comparing the calculated 𝐶𝑘 

values, which rely on the variance between subjects in real 

demographic groups (𝜎𝐷,𝑘
2 =  

1

𝑁
∑ ∑ (𝑥𝑖 − 𝑥̅𝐷)2)𝑖𝜖𝐷𝐷 , to the 99th 

percentile of the distribution of 𝐶𝑛𝑢𝑙𝑙, where 𝐶𝑛𝑢𝑙𝑙 is calculated 

by 500 shuffles assigning subjects to randomized demographic 

groups 𝐷.  Given 333 PCs with no significant clustering, this 

criterion would, by chance label 3 as clustered. 

Finally, to assess the overall demographic clustering for an 

algorithm, we measured the proportion of total variance in 

scores explained by demographic clustering according to 

Equation 3 where 𝜎𝑘
2 is the variance of 𝑃𝐶𝑘, 𝜎𝑡𝑜𝑡

2  is the total 

variance across the entire dataset, and 𝐶𝑘 is as described in 

Equation 2. 

𝐶𝑡𝑜𝑡 =
1

𝜎𝑡𝑜𝑡
2 ∑ 𝜎𝑘

2𝐶𝑘

𝑘

 (3) 

4) D Prime Analysis 

Since the PCs of algorithm similarity score matrices are 

orthogonal, it’s possible to discard certain PCs and reconstruct 

score matrices as if these components did not exist.  The 

reconstructed score matrices will have different distributions of 

mated (diagonal) and non-mated similarity (non-diagonal) 

scores.  To quantify the separation between these two 

distributions, and the impact of this reconstruction step, we use 

the d-prime metric [31]. Previous studies of demographic 

effects in face recognition have also measured broad relative 

shifts in mated and non-mated distributions using d-prime [27].  

We calculated the d-prime according to Equation 4 where 𝜇 and 

𝜎2 are the mean and variance, and 𝑀 and 𝑁𝑀 refer to the mated 

and the non-mated distributions of average similarity scores, 

respectively. 
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𝑑′ =  
𝜇𝑀 −  𝜇𝑁𝑀

0.5√𝜎𝑀
2 − 𝜎𝑁𝑀

2
 (4) 

IV. RESULTS 

A. Consistent Effects of Broad Demographic Homogeneity 

across Commercial Face Recognition Algorithms 

Prior work has shown, using a single CFRA, that the tail of 

the non-mated similarity score distribution between subjects of 

the same gender and race is higher than the tail of the 

distributions between subjects of different genders and race [9].  

All five CFRAs in our sample reliably followed this broad 

homogeneity effect (Fig. 2) Conversely, no effect of gallery 

homogeneity was observed for the CIRA. 

 
Fig. 2: Group homogeneity strongly modulates the tail of the non-mated 

distribution.  Each facet corresponds to a different biometric algorithm and plots 
the 99th percentile of the non-mated score distribution (Section III.B.1) across 

individuals.  Scores on the y-axis for each algorithm are divisively normalized 
such that scores at the 1:10,000 threshold (red line) get a value of 1.  Groups 

along the x-axis are as follows: DD, different gender and race; DS, different 

gender and same race; SD, same gender and different race; SS, same gender 
and race. 

B. Face Recognition Score Matrices have Block-Diagonal 

Demographic Structure 

Faces of different pairs of subjects have different features in 

common, only some of which are relevant to face recognition 

algorithms (Section II.A).  The patterns of similarity scores for 

individuals known to share various features can reveal how 

these features are weighted by the algorithm in calculating face 

similarity.  Variation in CFRA similarity scores is driven both 

by face features as well as by the properties of the images used 

in the comparison [10].  To isolate the effect of face features for 

each algorithm, we computed 110,889 average similarity scores 

between each unique pair of the 333 subjects in our sample. 

Fig. 3 plots these average subject-to-subject similarity scores 

as a score matrix with rows and columns sorted based on the 

gender and race of each subject in our dataset (Section III.B.2).  

Each score in this matrix is an average of 72 similarity scores 

between probe and gallery face images of the subjects and 28 

similarity scores between probe and gallery left iris images of 

the subjects.  As expected from Fig. 2, CFRA score matrices 

showed a clear block-diagonal structure with higher similarity 

scores for subject pairs within the same demographic group 

than between subjects in different demographic groups.  This 

structure indicates the presence of correlations in the data that 

could be leveraged by a dimensionality reduction technique, 

such as PCA. 

 
Fig. 3: CFRAs produce higher similarity scores within demographic groups.  
Each facet shows a raster plot of the average similarity scores produced for each 

pair of individuals in our sample.  To aid visualization, scores have been 

normalized such that the non-mated scores have 𝜇 = 0 and 𝜎 = 0.  Dashed lines 

separate demographic groups. Note block diagonal structure present for all 

CFRAs, but not for the CIRA 

C. Face Recognition Algorithms Cluster Individuals by Race 

and Gender 

Fig. 2 and Fig. 3 suggest that all CFRAs show homogeneity 

effects. However, it is difficult to compare the magnitude of the 

effects across algorithms because similarity scores returned by 

each black-box CFRA are scaled arbitrarily.  We used PCA 

(Section III.B.2) to reduce the dimensionality of the similarity 

metric (Fig. 4) and isolate the contribution of particular 

components to the overall variation in the data. 

After applying PCA, each PC corresponds to a score pattern 

across individuals in our sample.  Assuming that score patterns 

are related to the face features of individuals, those patterns that 

explain the largest proportion of similarity score variance 

should therefore separate subjects based on the relative 

contribution of this feature to score variance.  For instance, if 

similarity scores were determined solely by the relative width 

of the nose, then our subjects would be ordered based on nose 

width along the first PC of the score matrix.  If, on the other 

hand, scores were not related to nose length, but rather related 

to the intercanthal width, then subjects would be ordered by 

distance between the eyes and not by nose length.  Though we 

cannot know the important features used by the black-box 

CFRAs, we can examine the extent to which the order of 

subjects along each PC corresponds to demographic groups.  
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Further, since each PC has a known contribution to overall 

score variance, we can quantify the extent to which known 

demographic categories determine the similarity scores. 

 

 
Fig. 4: Visualization of select principal components. A. Component 1 for 

algorithm face1 shows distinct clustering by demographic group, but 
component 4 does not.  B. Components 1 and 2 for algorithm iris do not show 

demographic clustering.  C. Distributions of component values visualized 

associated with different demographic groups. 

D. Comparing Demographic Clustering Across Commercial 

Face Recognition Algorithms. 

We quantified the clustering illustrated in  Fig. 4 by 

computing a clustering index for each PC  (Section III.B.3, 

Equation 2). The clustering index is bounded between 0 and 1, 

with zero signaling that the variance within each gender and 

race group is the same as overall variance.  A clustering index 

of 1 indicates that there is no variance across individuals within 

each gender and race group. 

 

Fig. 5 shows the clustering index for the first ten PCs of each 

algorithm.  All five CFRAs showed statistically significant 

clustering for the first two PCs according to the test described 

in Section III.B.3.  Additionally, the first two PCs explained 

between 12 and 27 percent of the variance in similarity scores, 

depending on CFRA.  None of the first ten PCs had significant 

demographic clustering for CIRA similarity scores. 

To compare the extent to which different algorithms 

exhibited demographic clustering, we next measured the 

clustering index across all PCs (Section III.B.3, Equation 3).  

On average, we found demographic clustering accounted for 

10% of total CFRA score variance, ranging from 6% for 

“face4” to 14% for “face3” (Fig. 5B).  Clustering accounted for 

less than 2% of the variance in similarity scores produced by 

the CIRA.  Of the 333 PCs calculated for the CFRAs, on 

average 14 showed significant clustering, compared with one 

for the CIRA (Fig. 5C).  Components with no significant 

clustering accounted, on average for 62% of total score variance 

for CFRAs.  These components reflect face feature variances 

that is not associated with gender or race. 

E. Estimating the Effects of Ignoring Demographically 

Clustered Features 

We estimated the potential performance impact of having 

CFRAs ignore face features associated with gender and race.  

To do this, we reconstructed average similarity score matrices 

after removing all components with significant clustering and 

then compared the effects on the mated and non-mated 

distributions using the d' statistic (Section III.B.4).  Fig. 6 shows 

the distributions of average similarity scores in the original and 

reconstructed score matrices.  As expected, removing PCs with 

significant clustering brought the non-mated distributions of 

average scores between subjects of the same gender and race 

(SS) closer to the non-mated average scores between subjects 

of different genders and races (DD).  However, the operation 

also brought the overall mated and non-mated distributions 

closer together, decreasing d'.  Nonetheless, even after 

reconstruction, d' values remained high for some algorithms.  

Fig. 5:  Quantification of demographic clustering across algorithms.  A. Stem plot of the demographic clustering index computed for each component.  Filled 
circles correspond to components with statistically significant clustering (Section III.B.3).  Asterisks mark components visualized in Fig. 4.  B. The total 

proportion of similarity score variance explained by demographic clustering for each algorithm.  C. Number of principal components with statistically 

significant clustering for each algorithm 𝛼 = 0.01. 
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This suggests that ignoring face features associated with gender 

and race is likely to only modestly reduce CFRA performance 

since the range of original CFRA d' values (6.90 to 18.17) 

largely overlap the range of reduced d' values (5.22 to 2.70). 

V. DISCUSSION 

In this paper, we discuss the extent to which five commercial 

face recognition algorithms (CFRAs) and one commercial iris 

recognition algorithm (CIRA) utilize face features associated 

with gender and race in determining individual identity.  We 

first show that, non-mated similarity scores of all five CFRAs 

were higher between subjects of the same gender and race. 

Quantifying the proportion of score variance explained by 

gender and race information across CFRAs using principal 

component analysis, we show that some principal components 

cluster individuals by race and gender whereas most do not. 

Use of face features associated with gender and race by 

CFRAs creates concerns regarding the fairness of these 

algorithms in some applications.  Recent work by privacy 

groups [24] highlighted the fact that law enforcement face 

image galleries can be demographically homogeneous, with 

African American Males comprising a majority of the faces.  

The demographic clustering documented in this research means 

that performing identifications against such galleries using 

images of out-of-gallery African-American Males would yield 

higher rank-1 similarity scores relative to White Females.  To 

the extent that our sample of CFRAs is representative, it 

suggests that use of the current generation of CFRAs to perform 

identifications against large homogeneous galleries can result 

in disparate treatment based on race and gender [32]. 

However, our research also shows that this outcome is likely 

avoidable.  We found that most variation in CFRA similarity 

scores is not associated with race and gender.  Further, 

separation between mated and non-mated score distributions 

reconstructed exclusively using PCs that do not cluster 

individuals by race and gender was only modestly reduced, 

suggesting CFRAs can maintain acceptable performance even 

when ignoring face features associated with race and gender.  

Indeed, recent work suggests that demographic features can be 

removed from face images while maintaining subsequent face 

recognition [20] [21]. This is what has long been observed in 

iris recognition.  The periocular images used in iris recognition 

bear features related to demographics and both humans and 

algorithms can readily identify race and gender from periocular 

images [33] [34] [35].  Nonetheless, iris recognition algorithms 

based on iris-codes do not utilize these features in making 

identity determinations [19]. 

Our research suggests caution when using current CFRAs 

when performing identifications against large, homogeneous 

galleries and points to a need for audits of operational systems 

to measure the extent to which the differential performance 

demonstrated here leads to differential outcome in operational 

use.  Human review with orthogonal information may mitigate 

such occurrences.  Developing demographically-blind CFRAs 

that explicitly ignore face features associated with race and 

gender will help maintain fairness as use of this technology 

grows.  We believe that developing such algorithms and 

demonstrating fairness, including reduced demographic 

clustering, should be a focus for companies selling face 

recognition technology.  
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