U.S. Department of Homeland Security

SCIENCE AND TECHNOLOGY DIRECTORATE

Face Recognition Scenario testing, performance, and fairness

Arun Vemury

Lead

Biometric & Identity Technology Center Jerry Tipton Executive Director The Maryland Test Facility **Yevgeniy Sirotin**

Technical Director The Maryland Test Facility

April, 2023

Ο

Technology, Scenario, and Operational Testing

Technology Testing:

- Centered around a technology,
- Focused on a specific system component,
- Re-use of biometric datasets,
- Larger sample size.
- Answers questions about how technologies advance or perform relative to each other.
- Answers questions about the limits of a technology's performance.
- E.g. What is the minimum false match rate achievable by face recognition technology?

Scenario Testing:

- Centered around a use-case,
- Full multi-component biometric system,
- Gathering new biometric samples,
- Robust experimental control.
- Answers questions about how technology performs for an intended use.
- Answers questions about the suitability of a system for an intended use.
- Answers questions regarding demographic performance that cannot be answered through operational testing (E.g. performance across race categories or skin tones)
- E.g. How will face recognition perform in a high-throughput unattended scenario?

Operational Testing:

- Centered around a specific environment,
- Specific biometric system implementation,
- New data collected in the course of operational use,
- Little experimental control.
- Answers questions about how technology performs within the specific operational environment and with specific users.
- Answers questions regarding whether the technology meets specific operational performance benchmarks.
- E.g. Is the face recognition system meeting organizational performance objectives?

Past Biometric Technology Rallies

2018 Rally assessed acquisition systems

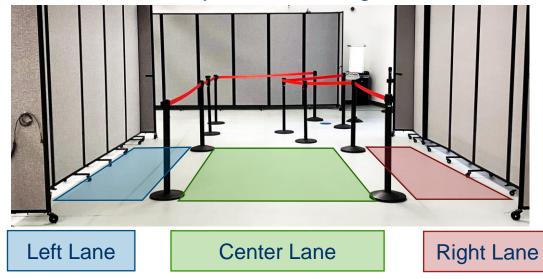
2019 Rally assessed acquisition systems *and* matching systems

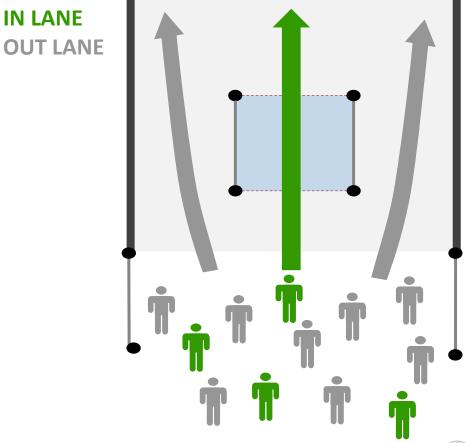
2020 Rally assessed acquisition and matching systems with face masks

2021 Rally assessed acquisition and matching systems with face masks and system equitability

- Since 2018, the Rallies have demonstrated progress in the performance and maturity of biometric acquisition and matching systems
 - Rally results provide insights into how people interact with biometric systems to improve usability
 - Rally results have been used to inform participating vendors, leading to improved performance of both acquisition and matching systems
 - There are continuing challenges with respect to reliable image acquisition in the high throughput unattended use-case

Group Processing at Checkpoints (Concept):

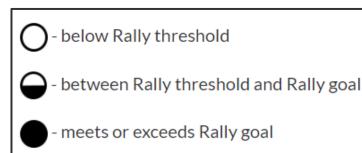


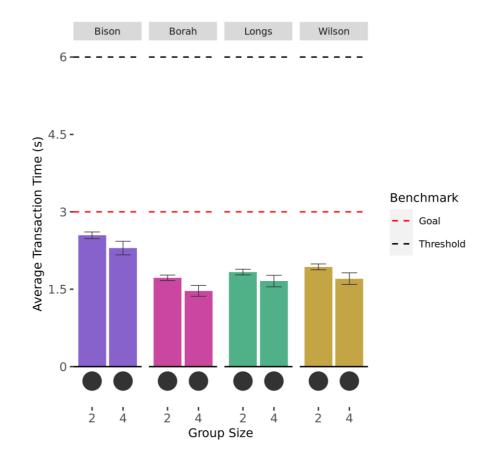


2022 Rally Process

Group Processing at Checkpoints (Testing):

2022 Rally Station Configuration





Efficiency

- All acquisition systems met the goal of 3 seconds or less and had faster per person transaction times for larger groups
- Quantified as average transaction time per group size per volunteer at each Rally Station

Most efficient:

Borah – 1.72 seconds per person for groups of 2,

1.47 seconds per person for groups of 4

Effectiveness – Operational Focus

- TIR: True Identification Rate: quantified as the percentage of users who were correctly identified
- (Correct Identifications / Total People)

	Acquisition System			
	Bison	Longs	Wilson	Borah
Kenai	97.4 [●]	96.5	93.2	74.1
Miami	97.4 [●]	96.5	93.2	74.1
Tioga	97.4 [●]	96.5	93.2	73.9
Mill	97.4 [●]	96.3	93.2	73.4
Bronx	97.0	96.3	93.0	73.6
Grant	97.4 [●]	96.0	93.0	73.0
Нор	96.9	95.8	92.8	73.7
Entiat	96.7	95.5	92.3	73.7
Flag	97.2	93.4	93.0	72.3
Row	83.7	83.8	79.2	62.4

Groups of 2

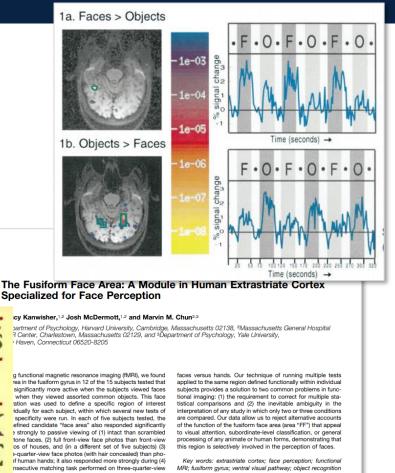
Matching System

		Acquisition System			
		Bison	Longs	Wilson	Borah
	Kenai	97.4 [•]	95.8	93.0	74.1
	Miami	97.4 [●]	96.0	93.0	74.1
	Tioga	97.4 [●]	96.0	93.0	74.1
Ę	Mill	97.4 [●]	96.0	93.0	73.9
Syste	Bronx	96.8	95.7	93.0	73.7
Matching System	Grant	97.2	95.1	93.0	73.7
Ma	Нор	96.8	95.7	93.0	74.1
	Entiat	96.5	95.3	92.3	73.6
	Flag	97.4 [•]	94.3	92.6	72.7
	Row	81.3	84.0	79.2	59.8

Groups of 4

- Seventeen (17) system combinations met the TIR threshold of 95% for groups of 2 and 4
- Same system combinations across groups of 2 and 4
- No system combinations met the TIR goal of 99%

Effectiveness – Demographics


- TIR performance was disaggregated into eight demographic groups
- Gender (self-reported)
 - Male, Female
- Race (self-reported)
 - Asian, Black, White
- Skin-Tone (measured)
 - Lighter, Medium, Darker

Faces are different from other biometric modalities for (at least) two reasons

- Faces are genetic, iris and fingerprint characteristics are determined during development.
 - To us, individuals look more like their parents, siblings, and those that share racial and gender categories.
- Humans have an innate ability to perform face recognition tasks, not so with iris and fingerprints.
 - Humans have dedicated brain areas that process faces quickly
 - This was an important function for human evolution
 - Mates, Friends, Foes, Family members
 - Other primates have a similar capability
 - Intuitively perceive same-gender and same-race faces as more similar
 - We even know the exact part of the human brain dedicated to face processing.
 - Evolved to recognize familiar individuals within small social groups (25-100)
 - Prosopagnosia "face blindness"

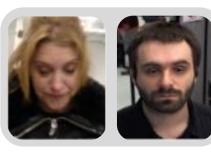
Awakenings and A Leg to Stand On

VER SAC

and Other Clinical Tales

John C. Marchall. The New York Finner flood Review

ence from cognitive psychology (Yin, 1969; Bruce et al., 1991; us to study cortical specialization in the normal human brain with relatively bioh coatial resolution and large campling area Past



Demographic Effects Exist, Our Understanding of Them may be Clouded.

> It may seem natural to us that face recognition "clusters" people based on race and gender <

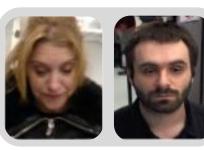
Iris recognition

Iris recognition false positives were random relative to race and gender

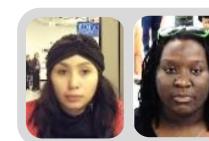
Face recognition

80% of face recognition false positives were between people of the same race and gender

Subjects consent for use of their image in publications was obtained



Apples and Apples or Apples and Oranges?

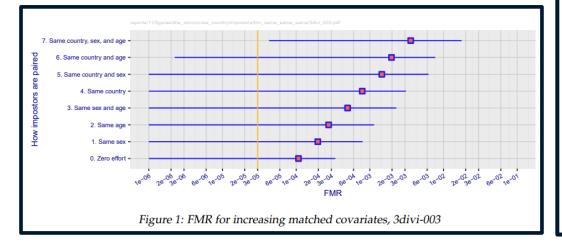

> All of these "errors" are called "false matches", but those on the right are different than those on the left <</p>

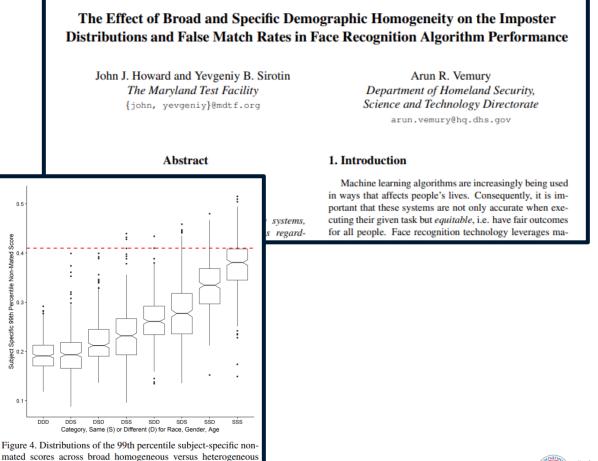
Iris recognition

Iris recognition false positives were random relative to race and gender

Face recognition

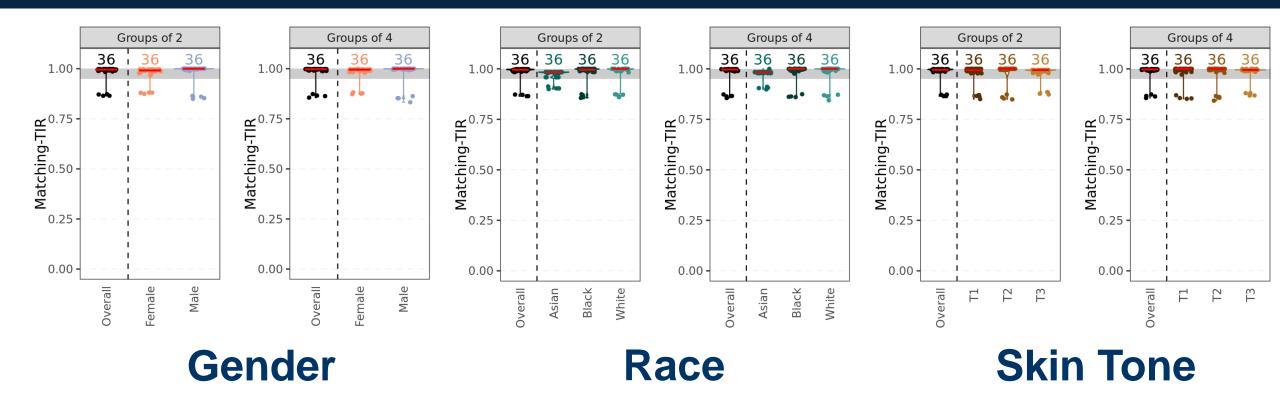
ience and Technology


80% of face recognition false positives were between people of the same race and gender

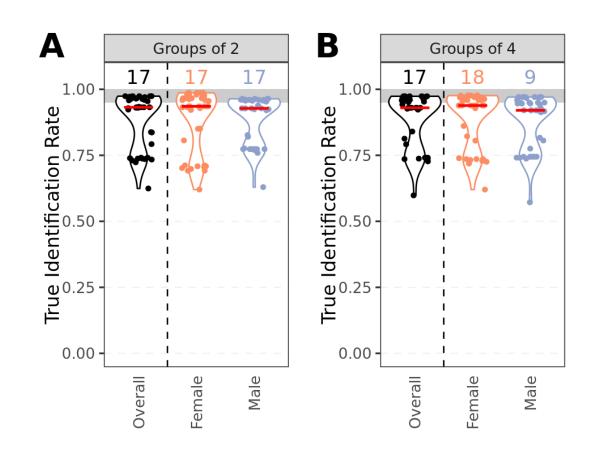

Subjects consent for use of their image in publications was obtained

This is (likely) (currently) a Universal Feature of Face Recognition

race, gender, and age categories.


- We first highlighted this in 2019 using one commercial algorithm
- NIST subsequently confirmed this exists in all 138 algorithms
 - NIST FRVT Part 3: Demographics Annex 5.

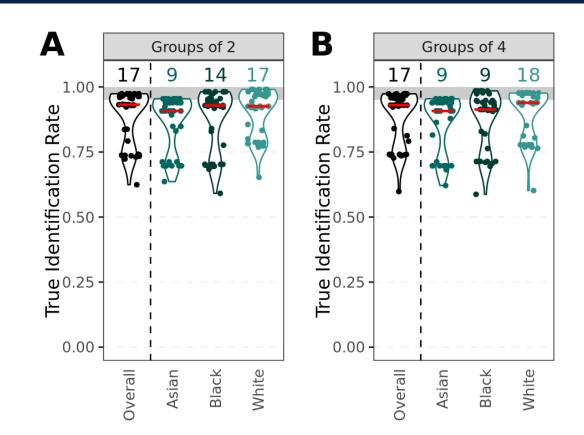
Matching Focus Demographic Differentials


When discounting failures to submit images of suitable quality, most system combinations were able to meet the 95% Rally matching-TIR threshold

Operational Focus Demographic Differentials

- Some system combinations were able to meet the 95% Rally TIR threshold for all demographic group
- However, considering acquisition some demographic differentials remained
- Median system performance was:
 - Lower for "Male" relative to "Female" volunteers (gender differential)

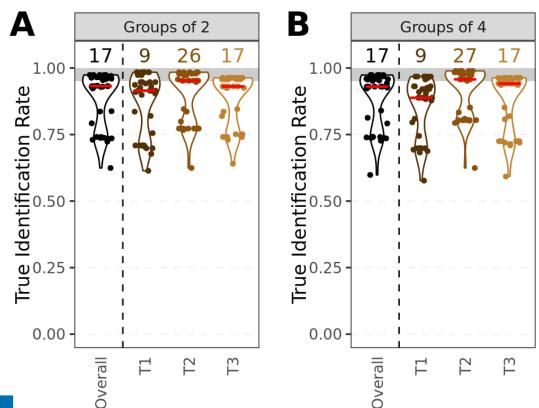
Group Size	Female	Male
2	93.5%	92.8%
4	93.9%	92.0%



Operational Focus Demographic Differentials

- Some system combinations were able to meet the 95% Rally TIR threshold for all demographic groups
- However, considering acquisition some demographic differentials remained
- Median system performance was:
 - Lower for volunteers that self-identified as "Asian" (race differential)

Group Size	Black	White	Asian
2	92.9%	92.5%	90.8%
4	91.3%	93.9%	90.8%



Operational Focus Demographic Differentials

- Some system combinations were able to meet the 95% Rally TIR threshold for all demographic groups
- However, considering acquisition some demographic differentials remained
- Median system performance was:
 - Lower for volunteers with very dark skin tone and very light skin tone (skin tone differential)

Group Size	Light Skin Tone	Dark Skin Tone
2	93.1%	91.4%
4	94.1%	88.8%

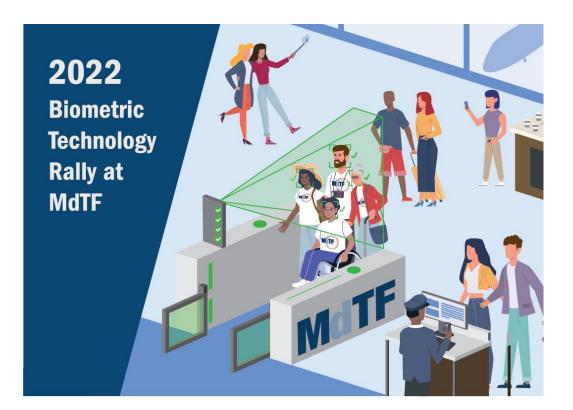
Demographic Summary

- When discounting failures to submit images of suitable quality, most system combinations were able to meet the 99% Rally match-TIR goal for all demographic groups
- Including failure to capture, some system combinations were able to meet the 95% Rally TIR threshold for all demographic groups
- Including failure to capture, demographic differentials in the number of systems able to achieve the 95% Rally TIR threshold were observed:
 - Lower for "Male" relative to "Female" volunteers
 - Lower for volunteers that self-identified as "Asian"
 - Lower for volunteers with darker skin tone

Interactive Results Available at mdtf.org

- The data presented today is available for review and exploration at <u>https://mdtf.org</u>
- Interactive visualization of demographically disaggregated performance
- Downloadable PDF report with detailed performance metrics for each tested system

PLACEHOLDER: Video showing interactions with website infographics


ISO/IEC 19795-10: Demographic Differentials

- DHS S&T is supporting development of standard methods of measuring demographic differentials:
 - ISO/IEC 19795-10 WD4 Biometric performance across demographic groups
 - How to define demographic groups, including skin-tone
 - How to plan and perform an assessment of demographic differentials
 - How to calculate & report error rates across groups

Questions & Answers

- Contact information
 - peoplescreening@hq.dhs.gov
 - rally@mdtf.org
- Visit our websites for additional information
 - To see additional work DHS S&T supports, visit <u>www.dhs.gov/science-and-technology</u>
 - To view additional information about this year and prior Rallies, visit <u>https://mdtf.org</u>

