DHS SCIENCE AND TECHNOLOGY

Developments in ISO 19795-10: Measuring Demographic Performance Across Demographic Groups

European Association for Biometrics, Workshop on Demographic Fairness in Biometric Systems, 3/30/2021

Science and Technology

Jacob Hasselgren, John Howard

The Maryland Test Facility

Arun Vemury

Biometric and identity Technology Center, Director

Disclaimer

- Support for this effort is funded by the U.S. Department of Homeland Security, Science and Technology Directorate on contract number 70RSAT18CB0000034
- Any opinions provided today are those of the authors and do not represent those of the Department of Homeland Security, the U.S. Government, or their employers

Standards History

- ISO 19795-1 (2006) Information technology Biometric performance testing and reporting — Part 1: Principles and framework
 - Establishes general principles for testing the performance of biometric systems in terms of error rates and throughput rates
 - Specifies performance metrics, requirements for recording of test data, and requirements on test protocols
 - Provides definitions for performance metrics, such as false-negative and false-positive identification rates
 - Currently under a five year review. Expected to be republished in 2021

ISO 2382-37 (2012) - Information technology — Vocabulary — Part 37: Biometrics

- Provides systematic descriptions of concepts in the field of biometrics pertaining to recognition of human beings
- A normative reference for 19795-1
- Most recent version republished in 2017

Standards History – ISO/IEC Technical Report 22116

- ISO IEC Joint Technical Committee 1 (Information Technology)
 - Subcommittee 37 (Biometrics)
 - Working Group 6 (Cross Jurisdictional and Societal Aspects of Biometrics)
- Scope
 - Terms and definitions
 - Where performance variation can exist in a biometric system
 - Literature review
- Approved for publication in January 2021

Information technology - A study of the differential impact of demographic factors in biometric recognition system

performance

ISO / IEC TR 22116

Secretariat: ANS

ISO/IEC ITC-1/SC 37/WG 6 N 180

Current Need to Standardize How we Measure and Talk about Demographic Fairness

- Growing numbers of deployments (law enforcement, border control, private)
- Increased public awareness and concerns
- Concern amongst policy-makers:
 - USS.3284 Ethical Use of Facial Recognition Act
 - USS.4084 Facial Recognition and Biometric Technology Moratorium Act of 2020
 - Australian Identity Matching Services Bill 2019
 - European Commission Ethics Guidelines for Trustworthy AI
- Inconsistency amongst researchers:
 - Bridges v. South Wales Police
 - "Bias" versus "Differential"
 - Sources of differentials (training, historical, process, etc.) and how we test for them

ISO/IEC WD 19795-10

- Quantifying biometric system performance across demographic groups
- New work item, approved in 2020
- First draft summer 2021

Science and Technology

Anticipated publication in 2023 - 2024

Information Technology - Biometric performance testing and

© ISO/IEC 2021- All rights reserved

reporting - Part 10: Quantifying biometric system performance variation across demographic groups

ISO/IEC WD 19795-10:2021(E)

ISO/IEC JTC 1/SC 37/WG 5 Secretariat: ANSI

19795-10 Current Challenges

Scope

- Definitions and nomenclature
- Categorical versus phenotypical measures and studies
- Statistical versus practical equivalence & uncertainty estimates
- How, where, and when to test
- What to report when you do test

Scope

• From the approved new work item proposal, this standard will:

... establish requirements for estimating and reporting of <u>performance variations</u> observed when cohorts belonging to different <u>demographic groups</u> engage with biometric enrollment and recognition systems

- Within Scope:
 - guidance on establishing demographic group membership
 - guidance on using phenotypic measures
 - establish terms and definitions to be used when reporting performance variation across demographic groups

- requirements on reporting of tests
- requirements for stating statistical uncertainty estimates

Scope

Demographics – statistical characteristics of human populations (Merriam-Webster)

- Populations, plural i.e., groups of people
- Can be based on:
 - Biological Characteristics: Sex, age, weight, height, skin tone, etc.
 - Geography: Birthplace, country of residence, city of residence, neighborhood, etc.
 - Social Constructs: Race, ethnicity, gender, marital status, income, education, employment, shopping habits, etc.
- Very broad
- Important to determine which groups to address explicitly:
 - Groups important to biometric performance?
 - Groups with legal protections?

Scope

- Excluded from scope (not explicit in the new work item):
 - Biometric "non-recognition", i.e., analysis
 - Biometric Sample Quality
 - Emotion, gender, or age estimation
 - Demographic groupings based on traits, not states
 - Makeup makeup is not a biological demographic
 - Mask wearing masks are not a biological demographic
 - Medical conditions
 - Eye surgery, cataracts, vision correction
 - Stroke, cleft lip, Apert's syndrome
 - Missing digits

19795-10 Current Challenges

Scope

Definitions and nomenclature

- Categorical versus phenotypical measures and studies
- Statistical versus practical equivalence & uncertainty estimates
- How, where, and when to test
- What to report when you do test

Differential Performance:

Mated Similarity Score Distribution

Differential Outcomes:

Differential Treatment:

- False negative differentials tendency for mated biometric samples from subjects in one demographic group not to match relative to another demographic group
- False positive differentials tendency for non-mated biometric samples from one demographic group to falsely match relative to another demographic group, or a tendency for this effect to occur across demographic groups
- Each differential can be described separately
- Standard may include guidance on identifying the differential(s) of concern across use-cases

- Summative Measures measures that combine multiple error rates or performance metrics
 - Differentials may be observed in summative measures (e.g., Accuracy, DCF, HTER)
- Fairness Measures summative performance measures that have been proposed as fairness metrics that combine differentials (FDR, NIST Inequity)
- Standard may leave choice of metrics open

$$\begin{split} A(\tau) &= \max(|\mathrm{FMR}^{d_i}(\tau) - \mathrm{FMR}^{d_j}(\tau)|) \quad \forall d_i, d_j \in \mathcal{D} \\ B(\tau) &= \max(|\mathrm{FNMR}^{d_i}(\tau) - \mathrm{FNMR}^{d_j}(\tau)|) \quad \forall d_i, d_j \in \mathcal{D} \\ \hline FDR(\tau) &= 1 - (\alpha A(\tau) + (1 - \alpha)B(\tau)) \\ A(\tau) &= \frac{\max_{d_i} \mathrm{FMR}^{d_i}(\tau)}{\min_{d_j} \mathrm{FMR}^{d_j}(\tau)} \quad \forall d_i, d_j \in \mathcal{D} \\ B(\tau) &= \frac{\max_{d_i} \mathrm{FNMR}^{d_i}(\tau)}{\min_{d_j} \mathrm{FNMR}^{d_j}(\tau)} \quad \forall d_i, d_j \in \mathcal{D} \\ \mathrm{INEQUITY} &= A(\tau)^{\alpha} B(\tau)^{\beta} \end{split}$$

19795-10 Current Challenges

- Scope
- Definitions and nomenclature
- Categorical versus phenotypical measures and studies
- Statistical versus practical equivalence & uncertainty estimates
- How, where, and when to test
- What to report when you do test

Categorical versus Phenotypical

Categorical

- Subjective categories
- Self reported or assigned
- Discrete

Fitzpatrick Skin Types

Phenotypical

- Observable characteristics
- Measurable
- Can be continuous

Categorical versus Phenotypical Measures

Categorical	Phenotypes	
 Cons: Rely on (potentially) socially defined or locale specific definitions Can be poor explainers of the variability in a dataset. "Black or Asian" describes people from diverse racial backgrounds. 	 Cons: Can be difficult to collect without access to the subject (Fitzpatrick, skin tone in general) Often attempted from the actual biometric sample, which introduces sampling error to both measurement and outcome 	
 Pros: In some locales, categorical variables can be legally protected classes May be required to show fairness across categorical category in evaluations 	 Pros: Don't rely on social constructs Possibly a better explainer of the outcome variable Often easier to arrive at engineering solutions given phenotypic explanations 	

19795-10 Current Challenges

- Scope
- Definitions and nomenclature
- Categorical versus phenotypical measures and studies
- Statistical versus practical equivalence & uncertainty estimates
- How, where, and when to test
- What to report when you do test

- Standard may include requirements for reporting of statistical uncertainty in differentials
- What do we mean when we say two rates are <u>equal</u>?
- Precisely equal? 95.21% != 95.22%
- Statistically equal?
 - Sampling a population introduces error
 - That error is based, in part, on how much of the population you sampled

- Standard may include requirements for reporting of statistical uncertainty in differentials
- What do we mean when we say two rates are <u>equal</u>?
- Precisely equal? 95.21% != 95.22%
- Statistically equal?
 - Sampling a population introduces error
 - That error is based, in part, on how much of the population you sampled

- Standard may include requirements for reporting of statistical uncertainty in differentials
- What do we mean when we say two rates are <u>equal</u>?
- Precisely equal? 95.21% != 95.22%
- Statistically equal?
 - Sampling a large population introduces error
 - That error is based, in part, on how much of the population you sampled

 - This has a downside at some level N there is always a statistical difference. *Minimum detectable effect*.

- NIST FRVT Part 3 numbers of subjects in each demographic category
 - 3 million imposter comparisons within each group
- At this population size (N), it is likely that even small differences in error rates between groups will be statistically significant
- Standard may include requirements for reporting statistical uncertainty estimates based on the sample sizes used in the evaluation

	Race	Sex	Mated Comparison	Impostor Comparison
	Label	Label	Count	Count
1	A	F	10 995	3 000 000
2	А	Μ	139 342	3 000 001
3	В	F	263 910	3 000 007
4	В	Μ	1954864	3 000 009
5	Ι	F	26 699	3 000 000
6	Ι	Μ	268 364	3 000 006
7	W	F	362 816	3 000 012
8	W	Μ	1 033 237	3 000 017
9	Total		4061227	108000690

- Lets pretend a false match rate of 10 in 100,000 tries (1e-4) for black males
- If a false match happens 12 in 100,000 times for white males, is that equal?

- P < 0.05, yes, a statistical difference exists
- Caution:
 - Minimum effect of interest >> Minimum detectable effect
- Standard may include guidance on interpretation of statistical differences

- Observable differences are based on 1) differences in error rates and 2) volume of biometric operations
- Very few existing definitions of what that *allowable* difference in observed error rate or observed errors can be
 - Based on a proportion? (US Equal Employment Opportunity Commission)
 - Based on a finite percentage? (Minimum effect of interest)
 - Others?

19795-10 Current Challenges

- Scope
- Definitions and nomenclature
- Categorical versus phenotypical measures and studies
- Statistical versus practical equivalence & uncertainty estimates
- How, where, and when to test
- What to report when you do test

How, Where, and When to Test

Operational Testing

ISO 19795-6: Biometric performance testing and reporting – Part 6: Testing methodologies for operations evaluation

Scenario Testing

ISO 19795-2: Biometric performance testing and reporting — Part 2: Testing methodologies for technology **and scenario** evaluation

Technology Testing

ISO 19795-2: Biometric performance testing and reporting — Part 2: Testing methodologies for technology evaluation

How, Where, and When to Test

Technology test:

- Good for motivating progress from industry
- Tracking progress (same dataset over time)
- Very large N allows very good capability to distinguish technologies
- Scenario test:
 - Good for finding issues in whole systems (poor camera, poor camera height, poor signage)
 - Good for in-depth demographic studies
 - Small N allows for less differentiation
- Operational test
 - Neither technology or scenario tests can be fully predictive of operational performance
 - Things change: database, environment, population, masks
 - Collecting ground-truth information about "subjects" in an operational test can be a challenge

19795-10 Current Challenges

- Scope
- Definitions and nomenclature
- Categorical versus phenotypical measures and studies
- Statistical versus practical equivalence & uncertainty estimates
- How, where, and when to test
- What to report when you do test

What to Report

- Different use cases have different "primary error(s) of concern". Therefore, different use cases may have different reporting criteria for demographic differentials.
- Factors:
 - Kind of test (technology, scenario, and operational)
 - Kind of operation (1:1, 1:N-allow, 1:N-deny, etc.)
- Operational test of a 1:N-deny system:
 - Gallery composition
 - False positive identification rate (positives / non-gallery searches), across demographics
 - False discovery rate (false positive / positives)
- Laboratory test of a 1:N or a 1:1 system:
 - Level of specific and broad homogeneity across demographic groups of interest
 - False non-match rate across phenotypes -- skin tone

Conclusions

- ISO/IEC 19795-10 will standardize how we quantify biometric system performance across demographic groups
- This will help address questions regarding "demographic fairness" in biometric system performance
- Development is underway. Now soliciting contributions
- Major areas of development:
 - Scope
 - Definitions and nomenclature
 - Categorical versus phenotypical measures and studies

- Statistical versus practical equivalence
- How Where, and When to Test
- What to report

Questions & Next Steps

- jacob@mdtf.org
- john@mdtf.org
- jerry@mdtf.org
- Find out more at <u>https://mdtf.org/</u>
- arun.vemury@hq.dhs.gov

