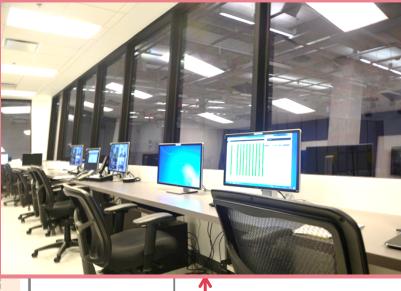
Efficient test design for biometric exit scenarios.

Yevgeniy B. Sirotin, Ph.D.

Outline

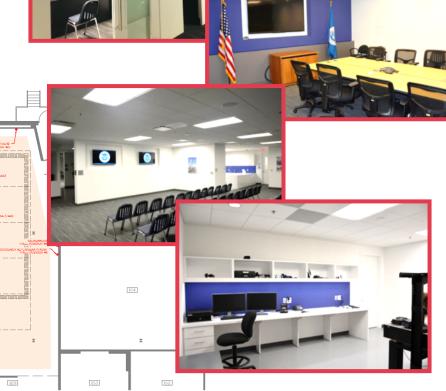
- Maryland Test Facility
 - Facilities and Capabilities

- Test Design Process
 - Balancing multiple requirements and constraints within a single test

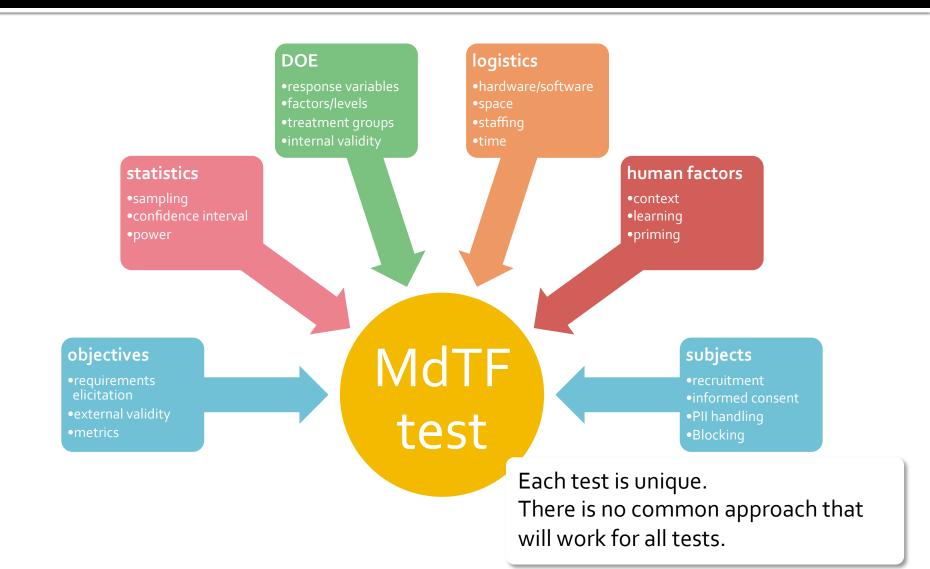


The Maryland Test Facility

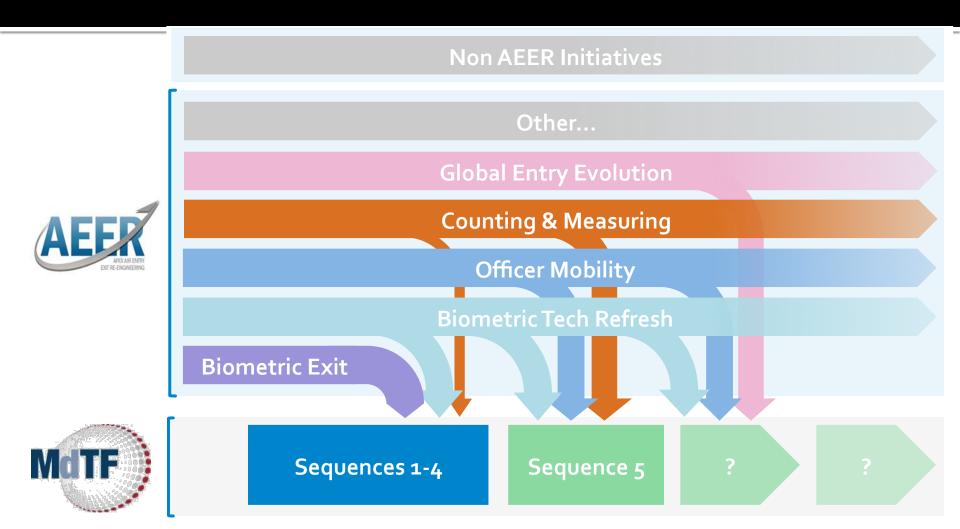
- 20,000+ ft2 of office and laboratory space
- Video Recording
 - 16 PTZ and Zoom video cameras
- **Eye Tracking**
- **Environmental sensors**
 - ambient light, noise, humidity, ...
- Control center
 - real-time monitoring and analysis



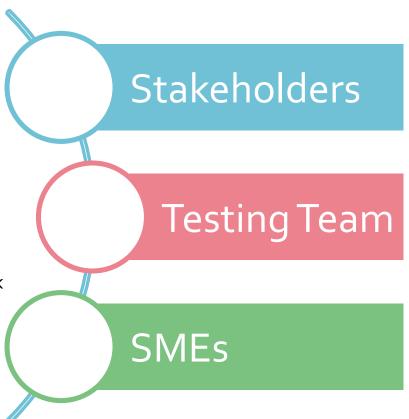
The Maryland Test Facility



- Private briefing & debriefing rooms
 - Informed consent: closed door, white noise
- Work areas
 - Focus Groups
 - Workshops
 - Training

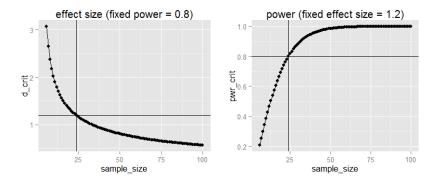

Laboratory space

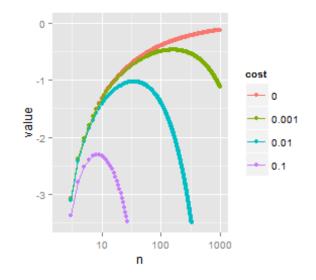
Elements of an MdTF test



MdTF Sequence Testing

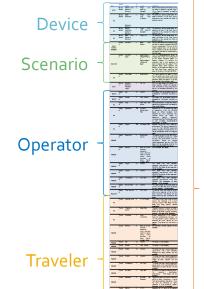
Identifying test objectives


- Why is the test being performed?
 - Single process
 - validation demonstrate function
 - exploration identifying important factors
 - benchmarking compare to specific criteria
 - refinement identify best factor levels
 - Different processes
 - differentiation identify differences
 - comparison compare along specific metrics
- What is the desired outcome?
 - data obtain specific data
 - knowledge know why it works / does not work
 - demonstration can show it can / cannot work
- What will happen as a result of the test?
 - recommendations
 - further analysis
 - down-selection



Statistical considerations

- Identify desired effect size (E) or confidence interval
 - Percentage? Benchmark? Critical difference?
- Power
 - Usually ≥ 0.8 (80% chance of detecting effect, when present)
 - Depends on sample size (n) and effect size
- Sample size
 - Ideal world: Sample size determined from power and effect size
 - Reality: Sample size drives cost (C = \$ & t), tradeoff depends on test objectives
- Test Value = -[E(n) + C(n)]


Note: cost function need not be linear and may have discontinuities, but good to be aware of ballpark when scoping the test.

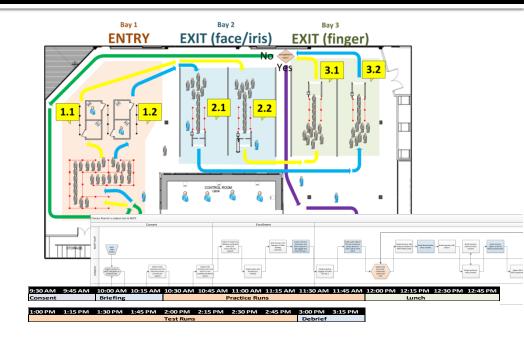
Design of Experiments

- Formalize response variables
 - E.g. Timing, performance, user feedback
- Identify factors and levels.
 - Build factor list (use stakeholders & SMEs)
 - Identify factor categories:
 - Device, Scenario, Operator, Subject, Process, Environment
 - Identify manipulated, fixed, or blocked factors
 - Do once and use many times
- We often include counterbalancing factors.
- Can everything be tested at once?
 - Treatment = tested factor/level combination
 - Use fractional factorial designs to reduce number of treatments needed
 - Use separate sub-experiments to reduce design complexity

Process &

Environment

Factors/Levels


Treatments

# Entry Face (A)	Entry Iris (B)	Exit (iris/face, C)	Exit (finger, D)	Entry Order (F)	Exit Order (
1 Logitech C920	IrisIDTD100	SRIN-Glance	Crossmatch Guardian	Face First	Iris First
2 Canon EOS Robel	IriaIDTD100	SRI N-Glance	Lunidigm V-Series	Face First	Iris First
3 Logitech C920	CMITech EMX-30	S81N-Glance	Crossmatch Guardian	Face First	Finger First
4 Canon EOS Robel	CMITech EMIX-30	SRI N-Glance	Lunidigm V-Series	Face First	Finger First
5 Logitech C928	Asptix Insight DUO	SRI N-Glance	Crossmatch Guardian	Face First	Iris First
6 Canon EOS Robel	Apptix Insight DUO	SRI N-Glance	Lunidigm V-Series	Face First	Iris First
7 Canon EOS Robel	IrisIDTD100	SRI N-Glance	Crossmatch Guardian	Iris First	Finger First
8 Logitech C928	IrisIDTD100	SRI N-Glance	Lunidigm V-Series	Iris First	Finger First
9 Canon EOS Robel	CMITech EMIX-30	SRI N-Glance	Crossmatch Guardian	Iris First	Iris First
10 Logitech C920	CMITech EMX-30	SRI N-Glance	Lunidigm V-Series	Iris First	Irls First
11 Canon EOS Robel	Apptix Insight DUO	S81 N-Glance	Crossmatch Guardian	Iris First	Finger First
12 Loghsch C920	Asptix Insight DUO	SRI N-Glance	Lunidigm V-Series	Iris First	Finger First
13 Logitech C928	IrisIDTD100	Aoptix Insight DUO	Crossmatch Guardian	Face First	Finger First
14 Canon EOS Robel	IrisIDTD100	Aoptix Insight DUO	Lunidigm V-Series	Face First	Finger First
15 Logitech C920	CMIToch EMX-30	Aoptix Insight DUO	Crossmatch Guardian	Face First	Irks First
16 Canon EOS Robel	CMITech EMX-30	Aoptix Insight DUO	Lunidigm V-Series	Face First	Iris First
17 Loghtech C920	Asptix Insight DUO	Aoptix Insight DUO	Crossmatch Guardian	Face First	Finger First
18 Canon EOS Rebel	Apptix Insight DUO	Aoptix Insight DUO	Lumidigm V-Series	Face First	Finger First
19 Canon EOS Rebel	IrisIDTD100	Aoptix Insight DUO	Crossmatch Guardian	Iris First	Iris First
20 Logitech C920	IrisIDTD100	Aoptix Insight DUO	Lunidigm V-Series	Iris First	Iris First
21 Canon EOS Rebel	CMITech EMX-30	Aoptix Insight DUO	Crossmatch Guardian	tris First	Finger First
22 Logitech C928	CMITech EMX-30	Aoptix Insight DUO	Lumidigm V-Series	Iris First	Finger First
23 Canon EOS Rebel	Asptix Insight DUO	Aoptix Insight DUO	Crossmatch Guardian	Iris First	Iris First
24 Loritech C920	Apptix Insight DUO	Agotix Insight DUO	Lunidiem V-Series	Iris First	Iris First

Note: Logistics and human factors will determine if a treatment can be executed?

Planning Logistics

- Space and movement
 - Facility layout
 - Movement plan
 - Process flowchart
- Time budget
 - Estimate time for each activity
 - Informed Consent, Transactions, Surveys, etc.
 - Generate test day schedule
- Time reduction through parallelization
 - Cost: more complex movements
- Staffing
 - Define test staff roles
 - Create and execute staff training sessions
 - Conduct walkthroughs
- Hardware/software
 - Build required test hardware
 - Design required test software
 - Test hardware + software

Human Factors Considerations

Context

- Video orientation / PPT Briefing
- Context-appropriate props
 - Booths, podiums, stanchions, baggage, etc...
- Scripted interactions

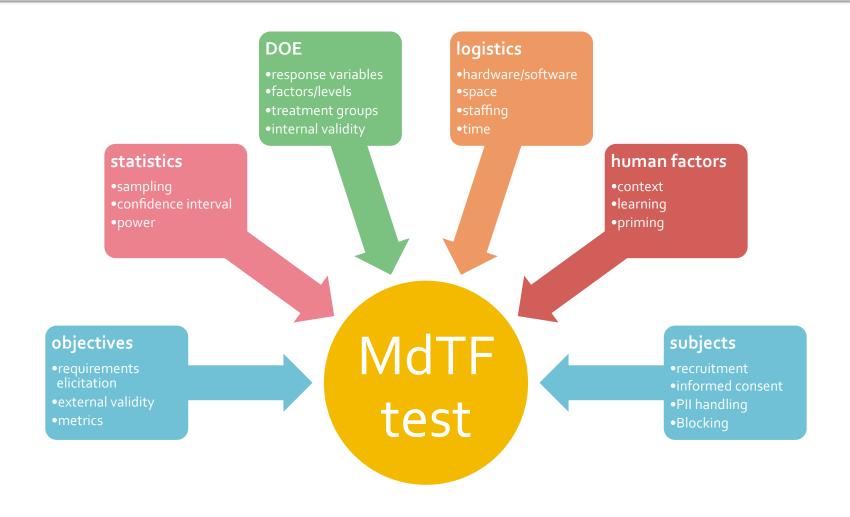
Learning

- Assess learning using repeated transactions
- Mitigate learning via practice sessions
- Simulate state of target population
 - E.g. 56% of travelers have not previously been to US

Priming

- Avoid pre exposure to test system
- E.g. acquire iris images for ground-truth using nontested collection method
- Avoid testing multiple similar processes in sequence
 - Counterbalancing schemes
 - Make factor between subjects instead of within subjects
 - Better measure less of what is relevant than more of what is irrelevant

Test Subjects


- Identify test population
 - What are the demographics?
 - What do the subjects know about the tested process?
- Develop blocks
 - Amount of stratification depends on block group size
 - Identify factors for blocking
 - May need to down-select based on importance
 - Age, gender, eye color, experience level, etc...
 - We typically block on no more than 3-4 factors for group size ~30
- Recruiting
 - Different populations require different approaches
 - Local population for public facing devices
 - Professional population for operator interface design
 - Population depletion?
 - Over time, becomes hard to find naïve subjects

Conclusions

Thank You!

The research for this paper was fully funded by the Department of Homeland Security Science and Technology Directorate on contract number W911NF-13-D-0006-0003. The views presented here are those of the authors and do not represent those of the Department of Homeland Security or of the U.S. Government.