U.S. Department of Homeland Security

SCIENCE AND TECHNOLOGY DIRECTORATE

Remote Identity Validation Technology Demonstration Webinar Track 3: Presentation Attack Detection

Arun Vemury Senior Advisor

Biometric & Identity

Technology Center

Richard Plesh

AI Scientist

Yevgeniy Sirotin

 $\mathbf{\cap}$

Technical Director

Identity and Data Sciences Lab (IDSL) at The Maryland Test Facility

November 2024

Introduction

- Remote Identity Validation Technology Demonstration (RIVTD) Overview
- Track 3: Presentation Attack Detection (PAD) Overview
- Track 3: PAD Metrics
- Track 3: Active PAD Results
- Track 3: Passive PAD Results
- Summary & Conclusions

INNOVATION: S&T IN ACTION

The Science & Technology Directorate (S&T) conducts foundational research to ensure advancements in science and technology are harnessed in the development of cutting-edge solutions to new and emerging operational challenges.

- Drive biometric and identity innovation at the Department of Homeland Security (DHS) through Research, Development, Test, and Evaluation (RDT&E) capabilities.
- Facilitate and accelerate understanding of biometrics and identity technologies for new, DHS use cases.
- Drive efficiencies by supporting cross-cutting methods, best practices and solutions across programs.
- Deliver subject matter expertise across the DHS enterprise.
- Engage industry and provide feedback.

Encourage innovation across industry and academia.

Science and Technology

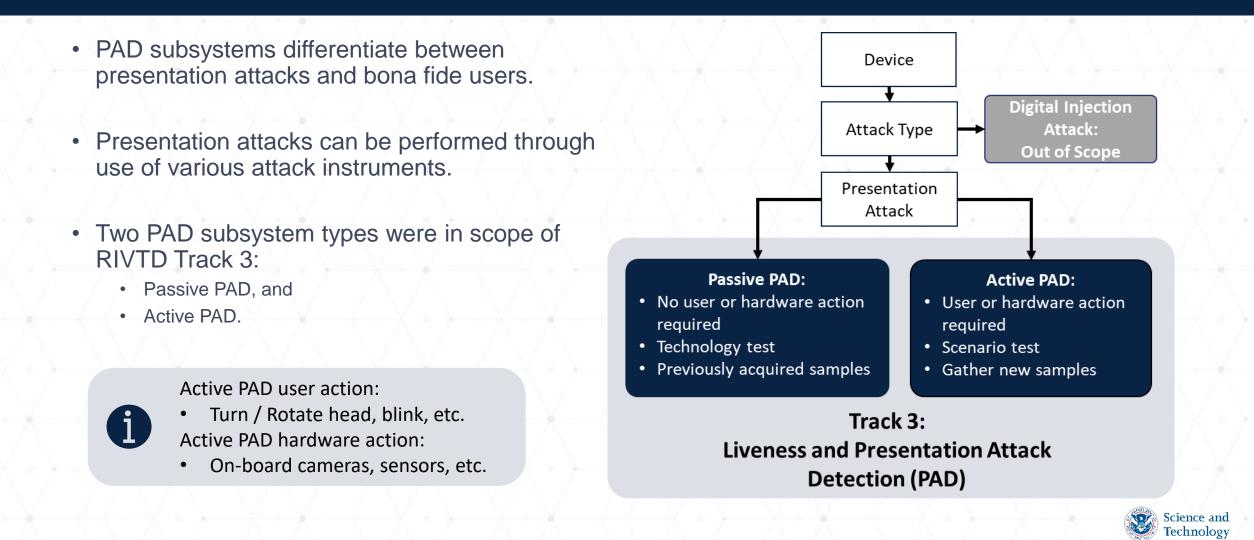
Remote Identity Validation Technology Demonstration

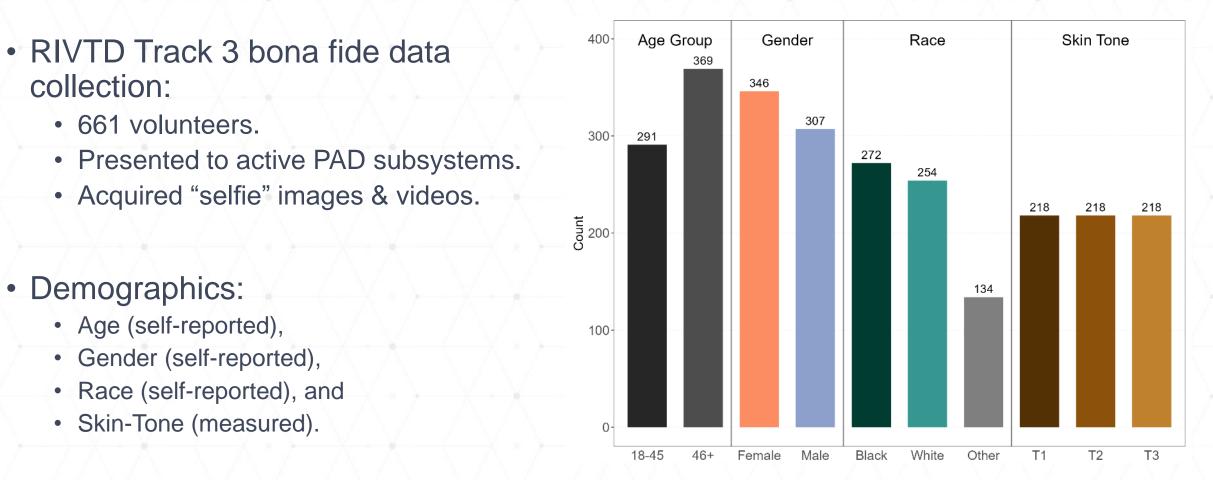
- Industry has developed new tools to authenticate documents and verify the identity of users remotely:
 - Remote Identity Validation (RIV).
- Difficult for industry to test the effectiveness and fairness of these systems:
 - Hard to obtain large samples of bona-fide and attack samples.
 - Testing for demographic differentials is costly.
- S&T is studying the current performance of RIV to help industry to develop more secure, accurate and equitable technologies.

Remote Identity Validation Technology Demonstration

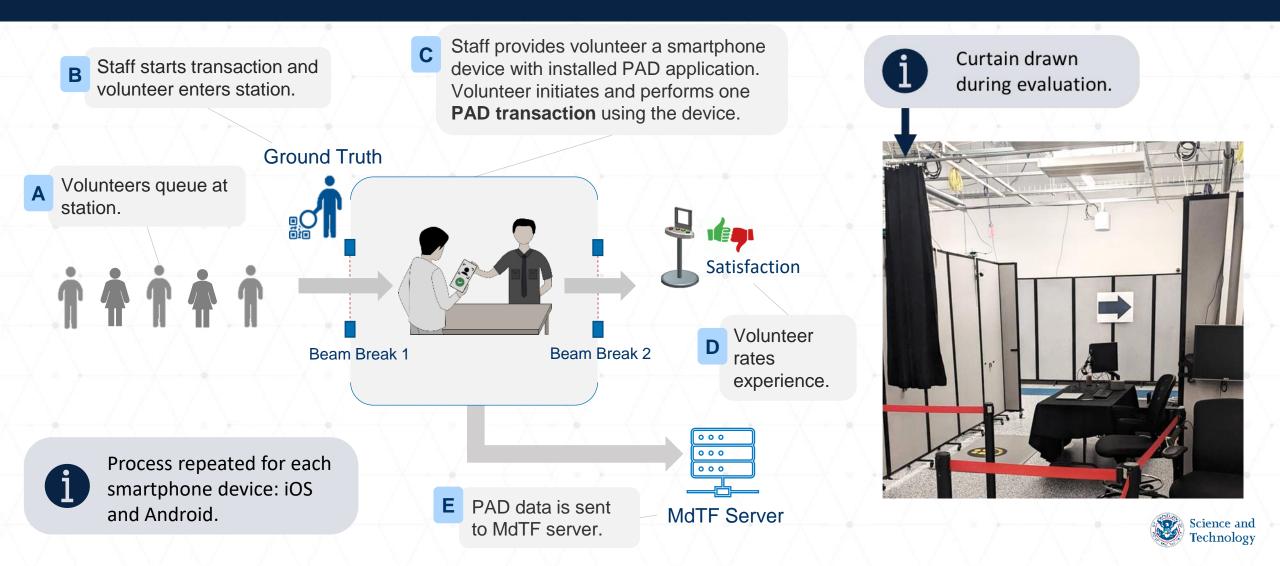
- S&T is evaluating component RIV technologies that are capable of:
 - 1. Assessing the validity of an identity document (U.S. driver's license),
 - 2. Matching a selfie to the photo on the identity document, or
 - 3. Assessing the "liveness" of the selfie.
- The demonstration has followed a phased approach, such that each of these steps in the RIV process is demonstrated in a separate track.

REMOTE IDENTITY VALIDATION TECHNOLOGY DEMONSTRATION

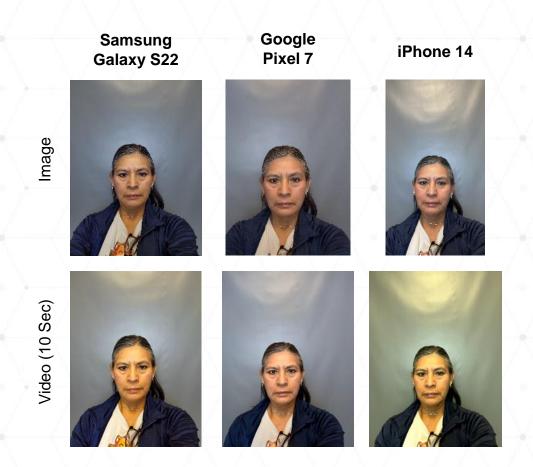



Track 3: Presentation Attack Detection Overview

Presentation Attack Detection Subsystems



Bona Fide Volunteer Demographics



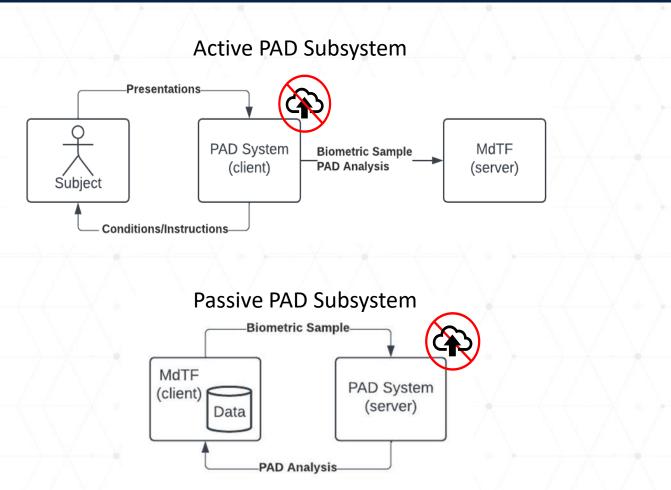
Active PAD: Bona Fide Demonstration Process

Passive PAD: Bona Fide Demonstration Process

- · Acquired dataset of "selfie" images and videos.
- Images captured in a standard environment in front of a gray background:
 - Users were asked to maintain a neutral expression and hold the smartphone straight.
 - Selfie videos are <u>10 seconds long</u> no special actions requested from user.
- Images and video were acquired using iPhone 14, Samsung Galaxy S22, and Google Pixel 7 smartphones:
 - Images were JPEG or PNG.
 - Videos were MOV or MP4.

Volunteer shown consented to have their images used in government presentations.

Presentation Attack Instruments


Class A	Class B	Class C		
Printout on Paper	Paper Masks	Attacks requiring special hardware		
 Display on Screen 	 Video Replay on Screen 	and significant effort/cost to perform		

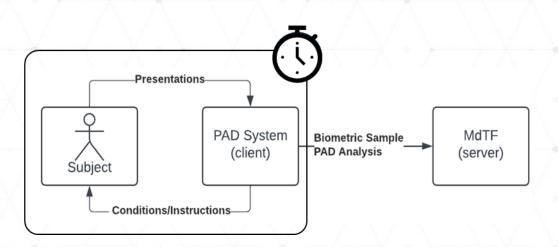
The number and specific species of PAIs will not be disclosed.

Subsystem Requirements

- Implement the MdTF active or passive PAD Application Programming Interface.
- No outside functionality and no access to the internet.
- Target a 1% Bona fide Presentation Classification Error Rate (BPCER).

Application and Selection Process

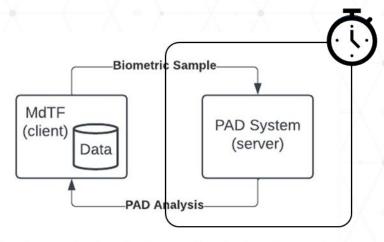
- All RIVTD Track 3 applications were evaluated by a panel of experts.
- PAD subsystems:
 - 8 active subsystems applied \rightarrow 6 active subsystems selected.
 - 17 passive subsystems applied \rightarrow 15 passive subsystems selected.
 - Representative of industry state of the art.
- Each subsystem was given a unique alias:
 - Passive: PAD-P1, PAD-P2, ...
 - Active: PAD-A1, PAD-A2, ...



Track 3: Presentation Attack Detection Metrics

Active PAD: Efficiency and Satisfaction

- Efficiency:
 - Average Transaction Time.
 - The average time users spend interacting with the subsystem.
 - · Benchmark: Below 30 seconds.


- Satisfaction:
 - Positive Satisfaction Rate.
 - The proportion of volunteers positively satisfied after interacting with the subsystem.
 - Benchmark: Above 90%.

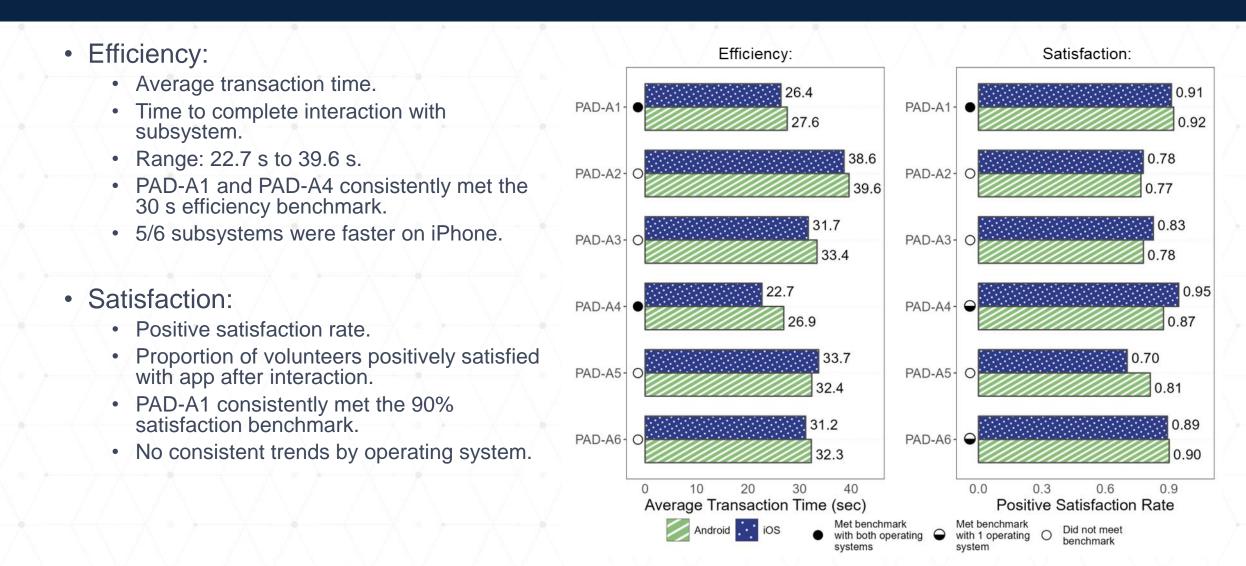
Passive PAD: Efficiency

- Efficiency:
 - Average Run Time.
 - The time taken to process a biometric sample.
 - Benchmark: Below 5 seconds.

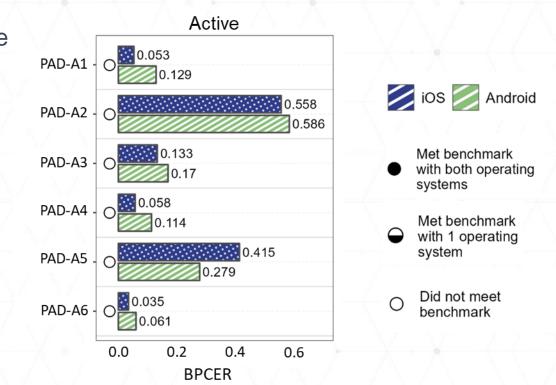
Bona Fide Presentation Classification Error Rate (BPCER)

- BPCER: The proportion of bona fide presentations that are incorrectly classified as presentation attacks.
 - In this evaluation, PAD subsystem providers were required to target a 1% BPCER.
 - Benchmark: Below 3%.
- BPCER (Max): The maximum BPCER across tested smartphones.
- Errors (non-responses) interpreted as "attack detected" response.
 - Failure is suspicious policy: In a bona fide scenario, non-responses contribute to BPCER.

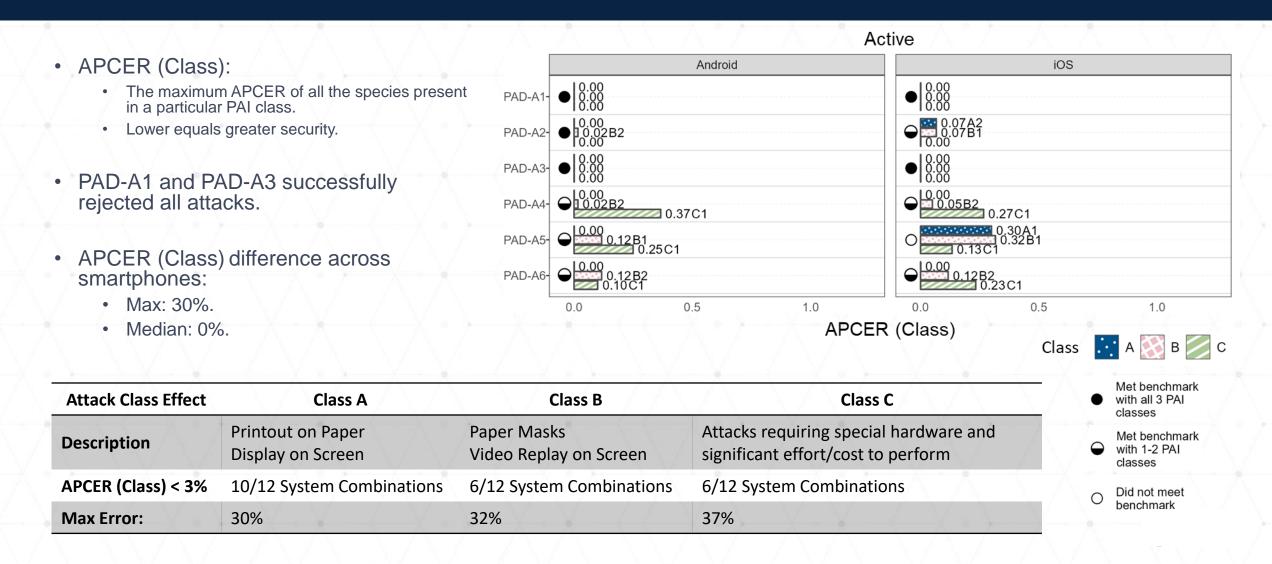
Attack Presentation Classification Error Rate (APCER)


- APCER: The proportion of attack presentations using a given PAI species that are incorrectly classified as bona fide.
 - Benchmark: Below 3%.
- APCER (Class): The maximum APCER across species in a particular PAI class.
- APCER (Max): The maximum APCER across tested species and smartphones.
- Errors (non-responses) interpreted as "attack detected" response.
 - Failure is suspicious policy: In an attack scenario, non-responses do not contribute to APCER.

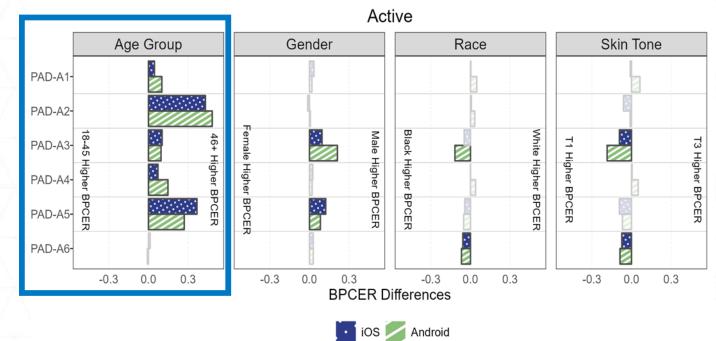
Track 3: Active PAD Results


Active PAD: Efficiency and Satisfaction

Active PAD: Bona Fide Classification Error Rate (BPCER)


• BPCER:

- The proportion of bona fide presentations that are incorrectly classified as presentation attacks.
- Lower equals greater convenience.
- No active subsystem met the 3% error benchmark.
- BPCER difference across smartphones:
 - Max: 14%
 - Median: 5%

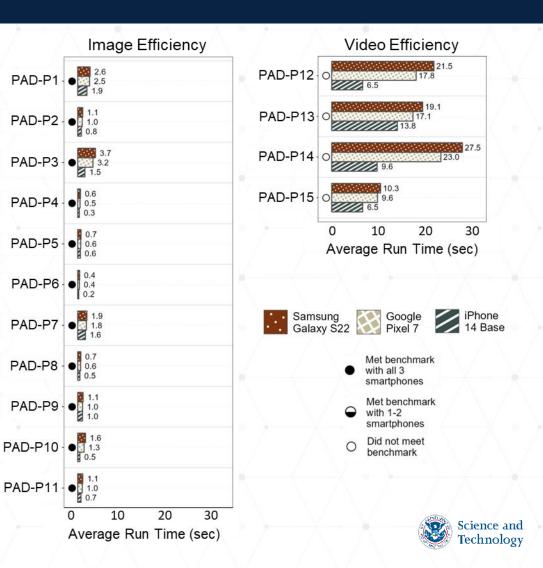


Active PAD: Attack Presentation Classification Error Rate (APCER)

Active PAD: BPCER Differential Performance

- Active PAD subsystems made more errors for older people.
 - 10/12 active PAD system combinations had substantially higher BPCER for older volunteers.
 - Up to 48% BPCER difference.
- Differential performance based on gender, race, and skin tone was not consistently observed across active subsystems.

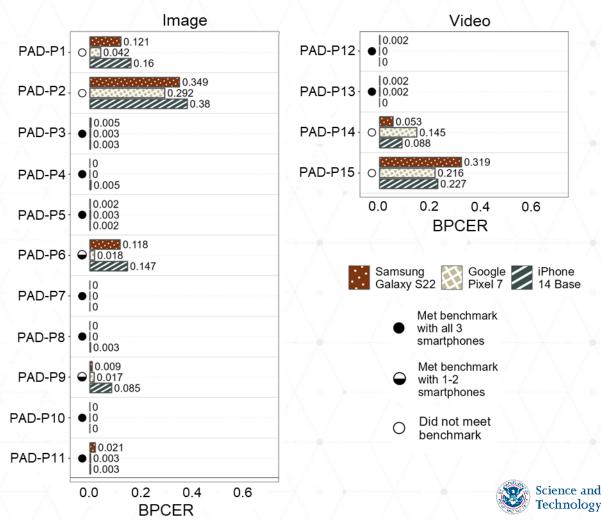
*Statistically significant differences shaded darker.



Track 3: Passive PAD Results

Passive PAD: Efficiency

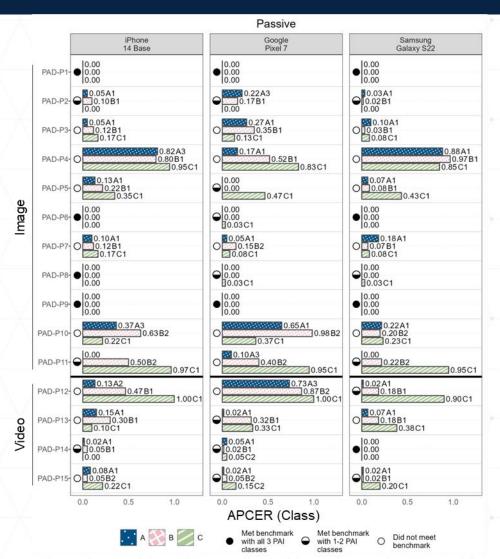
- 11/15 subsystems consistently met the 5 s efficiency benchmark.
- Video-input systems were substantially slower relative to image-input systems.
 - Image-input system combinations: 0.2 seconds to 3.7 seconds to process a still image.
 - Video-input system combinations: 6.5 seconds to 27.5 seconds to process a 10 second video clip.
- Smartphone effect on efficiency:
 - Fastest on average: iPhone 14
 - Slowest on average: Samsung Galaxy S22



Passive PAD: Bona Fide Classification Error Rate (BPCER)

• BPCER:

- The proportion of bona fide presentations that are incorrectly classified as presentation attacks.
- Lower equals greater convenience.
- 9/15 passive subsystems met the 3% BPCER benchmark (for all smartphones).
- BPCER difference across smartphones:
 - Max: 8.6%


• Median: 0.3%

Passive PAD: Attack Presentation Classification Error Rate (APCER)

- APCER (Class):
 - The maximum APCER of all the species present in a particular PAI class.
 - · Lower equals greater security.
 - Benchmark set at 3% error.
- PAD-P1 and PAD-P9 successfully rejected all attacks.
- APCER (Class) difference across smartphones:
 - Max: 52%
 - Median: 6%

Attack Class Effect	Class A	Class B	Class C		
Description	Printout on Paper Display on Screen	Paper Masks Video Replay on Screen	Attacks requiring special hardware and significant effort/cost to perform		
APCER (Class) < 3%	21/45 System Combinations	17/45 System Combinations	14/45 System Combinations		
Max Error:	88%	98%	100%		

Passive PAD: BPCER Differential Performance

٠

•

•

•

Age:

• Race:

Gender:

Across different passive systems, demographic differentials in BPCER were not consistent with respect to age, Age Group Gender Race Skin Tone PAD-P1-PAD-P2-**P** gender, race or skin tone. PAD-P3-PAD-P4-PAD-P5mage PAD-P6-1/15 subsystems higher error for 46+. Female Black White 18 Male 46+ a. T3 Higher BPCER 45 Highe PAD-P7-Higher Higher Higher Higher Higher Higher PAD-P8- 1/15 subsystems higher error for Female BPC BPCE BPCER BPCER BPCE BP BPC PAD-P9-2/15 subsystems higher error for Male. PAD-P10m J Ŗ PAD-P11-1/15 subsystems higher error for Black. PAD-P12- 2/15 subsystems higher error for White. Video PAD-P13-Skin tone: PAD-P14- \sim 2/15 subsystems higher error for T1 (dark skin). PAD-P15-2/15 subsystems higher error for T3 (light skin). -0.3 0.0 0.0 -0.3 0.0 0.0 0.3 -0.3 0.3 0.3 -0.3 0.3 **BPCER Differences** *Statistically significant differences shaded Samsung Galaxy S22 iPhone Google 🦢

Passive

darker.

14 Base

Pixel 7

Summary & Conclusions

Active PAD: Results Summary

• BPCER:

• No active subsystem met the 3% BPCER benchmark.

• APCER:

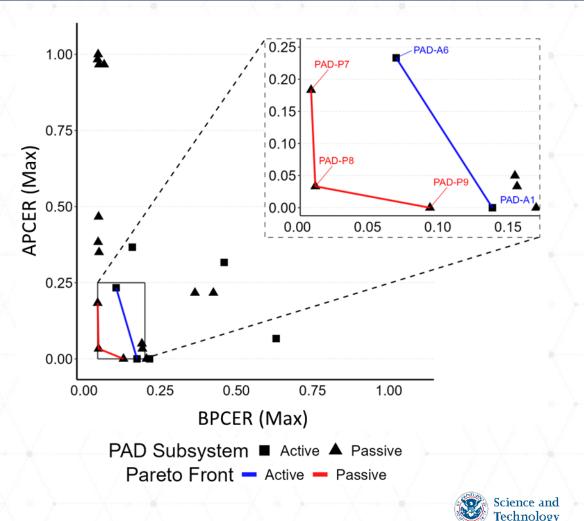
- PAD-A1 and PAD-A3 subsystems detected all attempted attacks.
- No other active subsystems met the 3% APCER (Max) benchmark.
- Efficiency (Average Transaction Time):
 - PAD-A1 and PAD-A4 met the 30 s benchmark.
- Differential Performance:
 - 5/6 subsystems had significant differential performance in BPCER with respect to age.

PAD-	A	1	2	3	4	5	6
BPCER (M	ax)	12.9%	58.6%	17.0%	11.4%	41.5%	6.1%
APCER (M	ax)	0.0%	6.7%	0.0%	36.7%	31.7%	23.3%
Satisfactio (Min)	on	91%	77%	78%	87%	70%	89%
Average Transactio Time (Max		28s	40s	33s	27s	34s	32s
		N.					
	Legen	d	12223	2.2.1		0	
X Met Benchmark			x	Did Not Benchm			

* "Max" and "Min" is used to find worst-case values for each metric over all tested attack types and devices.

Passive PAD: Results Summary

- BPCER:
 - 9/15 subsystems met the 3% BPCER benchmark.
- APCER:
 - PAD-P1 and PAD-P9 detected all attempted attacks.
 - No other subsystems met the 3% APCER (Max) benchmark.
- Efficiency (Average Run Time):
 - All image-based, but not video-based subsystems met the 5 s efficiency benchmark.
- Demographic differentials:
 - No consistent trends across subsystems.



* "Max" is used to find worst-case values for each metric over all tested attack types and devices.

Conclusions – Insights for PAD Providers

- Both active and passive PAD can be effective at detecting presentation attacks:
 - 2 active and 2 passive PAD subsystems detected all presentation attacks.
- Despite convenience focus of the demonstration, some subsystems sacrificed convenience for security:
 - Performance varied widely from the convenience target of 1% BPCER:
 - Active PAD tested BPCER (Max): 6.1% 58.6%
 - Passive PAD tested BPCER (Max): 0% 38%
- PAD subsystem performance can depend on the smartphone device.
- Active user interaction is a critical dependency of PAD and may introduce demographic differentials:
 - 5 of 6 active PAD subsystems had substantially higher BPCER for older volunteers.

Conclusions – Insights for PAD Customers

- No subsystem met all convenience, security, efficiency, and satisfaction benchmarks.
 - 6 Active subsystems and 15 passive subsystems demonstrated.
- Convenience and security varied substantially across subsystems.
 - Setting the systems up to achieve the target BPCER was challenging for PAD subsystem providers.
- 43% (9/21) subsystems met convenience (BPCER) benchmark
 - Only passive met the benchmark (active subsystem BPCER included acquisition errors).
 - Passive PAD performance may be lower when acquisition errors are considered.
- 19% (4/21) subsystems met security (APCER) benchmark
 - 2 active and 2 image-input passive.
 - Video-input did not have security benefits over image-input.
- 62% (13/21) subsystems met efficiency benchmarks.
 - 2 active and 11 image-input passive (different benchmarks used for active/passive).
- 17% (1/6) active PAD subsystems met the satisfaction benchmark.
 - Passive subsystems not tested for satisfaction.

Questions & Answers

- Contact information:
 - peoplescreening@hq.dhs.gov
 - rivtd@mdtf.org
- Visit our websites for additional information.
 - To see additional work DHS S&T supports, visit <u>www.dhs.gov/science-and-technology</u>.
 - For information about this and other DHS S&T technology evaluations, visit <u>https://mdtf.org</u>.

