

U.S. Department of Homeland Security

SCIENCE AND TECHNOLOGY DIRECTORATE

Remote Identity Validation Rally (RIVR) Selfie Match to Document (SMTD) Results Webinar

Science and
Technology

Arun Vemury

Senior Advisor
Biometric & Identity
Technology Center

Yevgeniy Sirotin

Technical Director
The Maryland Test Facility
January 2026

Agenda


- Introduction
- Remote Identity Validation Rally (RIVR)
- RIVR: Selfie Match to Document Evaluation
 - Data Used
 - System Requirements
 - Metrics and Benchmarks
- RIVR: Selfie Match to Document Results
 - Evaluation Criteria
 - Failure to Extract Rate
 - False Non-Match Rate
 - False Match Rate
- Summary & Conclusions

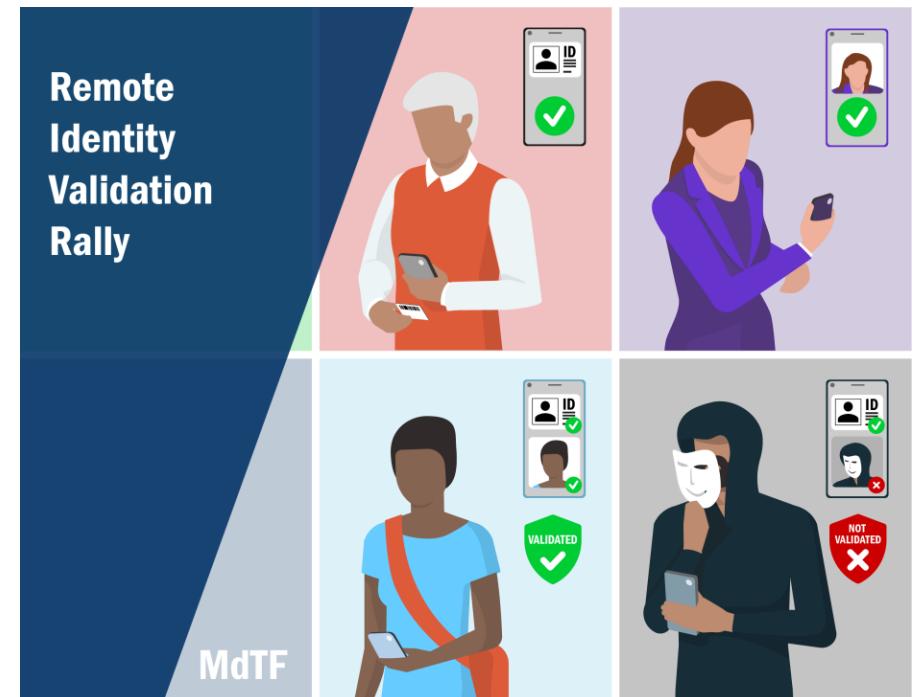
We are the Department's Science Advisor and research and development arm.

Since 2003, the Department of Homeland Security (DHS) Science and Technology Directorate (S&T) has provided sound, evidence-based scientific and technical perspectives to address a broad spectrum of current and emerging threats.

Biometric & Identity Technology Center

The Science & Technology Directorate (S&T) conducts foundational research to ensure advancements in science and technology are harnessed in the development of cutting-edge solutions to new and emerging operational challenges.

- Drive biometric and identity innovation at the Department of Homeland Security (DHS) through Research, Development, Test, and Evaluation (RDT&E) capabilities
- Facilitate and accelerate understanding of biometrics and identity technologies for new, DHS use cases
- Drive efficiencies by supporting cross-cutting methods, best practices and solutions across programs
- Deliver subject matter expertise across the DHS enterprise
- Engage industry and provide feedback
- Encourage innovation across industry and academia


Remote Identity Validation

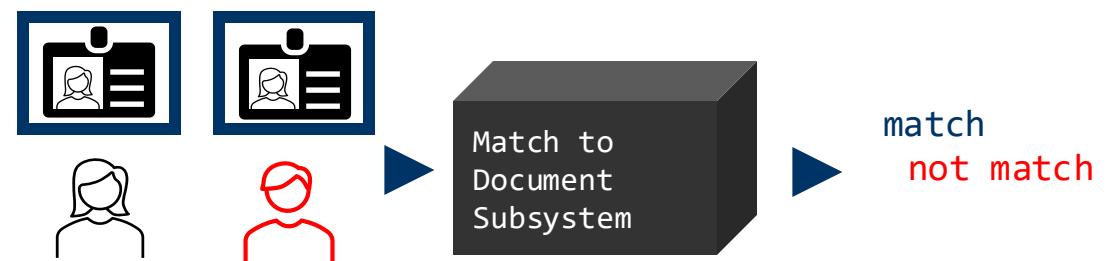
- Remote Identity Validation (RIV) technology is a tool to authenticate documents and verify the identity of users remotely
- These systems are complex, with multiple subsystems, and are increasing in popularity and adoption
- Industry performance benchmarks are not well defined, making it difficult for organizations to test the effectiveness of these systems
- S&T is studying the current performance of RIV to help industry develop more secure, accurate, and robust technologies:
 - Remote Identity Validation Technology Demonstration (RIVTD) from 2023 to 2024
 - Comprehensively demonstrated performance of commercial RIV subsystems
 - Informed NIST digital identity guidelines
 - Identified metrics, performance gaps, and achievable performance benchmarks
 - Remote Identity Validation Technology Rally – currently ongoing

Remote Identity Validation Rally (RIVR)

- **Building on RIVTD Insights:** RIVTD identified key areas where RIV vendors should focus improvements, shaping the next phase of evaluation
- **Establishing Achievable Benchmarks:** RIVR sets industry-informed performance benchmarks based on RIVTD results, providing clear targets for improvement
- **Encouraging Innovation & Retesting:** Vendors can refine their technologies and participate in re-evaluation
- **Confidential & Industry-Driven:** Vendor names are aliased, allowing companies to self-attest participation while fostering industry-wide progress

Selfie Match to Document Track Process & Requirements

Image Sources


- Leveraged a large and growing collection of:
 - Images of genuine U.S. State-issued ID cards (e.g., driver's licenses)
 - Selfie photo images
- RIV selfie Match to Document Systems (MTDSs) were evaluated based on their ability to determine if a **selfie image** is the same person as pictured on a **U.S. State-issued ID card**.
- Sample Images:

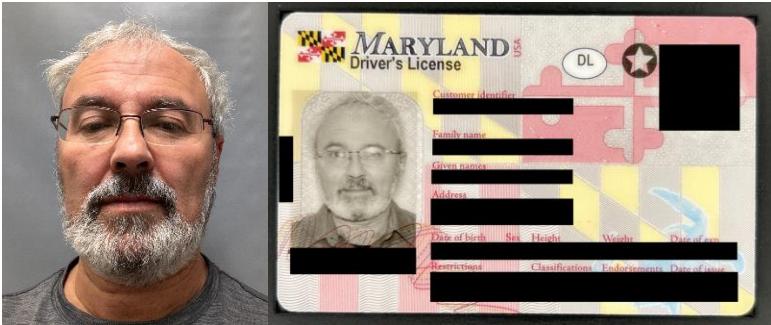
All volunteers shown here consented to have their images used in government presentations.

Sample driver license taken from:
[What do the new Maryland driver's licenses look like? \(wbaltv.com\)](http://What do the new Maryland driver's licenses look like? (wbaltv.com))

Science and
Technology

Dataset Composition

- A total of 1,632 volunteers participated in two data collections
 - Maryland Test Facility (MdTF), May 2023
 - Remote Collection, September 2023
- Each volunteer used each of three smartphones to provide a controlled selfie image
- Test team personnel used each smartphone to collect one controlled document image
 - Only front of document used
- Demographics:
 - Age (self-reported)
 - Sex (self-reported)
 - Race (self-reported)
 - Skin-Tone (measured)


Category	Group	n
Sex	Female	923
	Male	702
	Other	7
Race	Asian	354
	Black or AA	285
	Hispanic	268
	Other	297
	White	428
Age Group	18-30	295
	31-45	525
	46-60	432
	61+	379
	Not reported	1
Total		1,632

Sample Images Across Devices

- Selfies and document images were acquired on each of three smartphones

Apple iPhone 14

Samsung Galaxy S22

Google Pixel 7

*Volunteers shown consented to have images used in government presentations. ID documents redacted to protect privacy.

Participating Systems

- 16 commercial selfie Match to Document Systems (MTDSs) participated in RIVR
 - Announced in March 2025
 - Applications due in April 2025
 - Submissions due in May 2025
- Representative of the state of the industry
- Each system was given a unique alias (MTDS 1, MTDS 2, etc.)

System Requirements

- Implement the MdTF Match to ID Application Programming Interface (API)
- A single Linux-based docker container
 - HTTP server on port 8080
 - Less than 5 GB in size
- No outside functionality and no access to the internet
- Licensed to operate at MdTF

The Maryland Test Facility Match-to-ID Interface 0.0.1

OAS3

This document specifies the API requirements for MdTF testing of algorithms that match facial biometric samples to identity document images ("match-to-id"). Match-to-ID testing at the MdTF is supported by the Department of Homeland Security, Science and Technology Directorate (DHS S&T) as part of the Remote Identity Validation Technology Demonstration (RIVTD). For more information please visit <https://mdtf.org> and <https://www.dhs.gov/science-and-technology/BI-TC>

[The MdTF - Website](#)
[Send email to The MdTF](#)
Copyright (c) 2023, The Maryland Test Facility

Biometric Operations

^

POST `/v1/create-template` Generate a template from the provided facial biometric sample or the identity document image. ▼

POST `/v1/compare-list` Compare a single template to a list of target templates. ▼

Algorithm Information

^

GET `/v1/info` Returns basic information for the algorithm. ▼

Selfie Match to Document Metrics (ISO Standard)

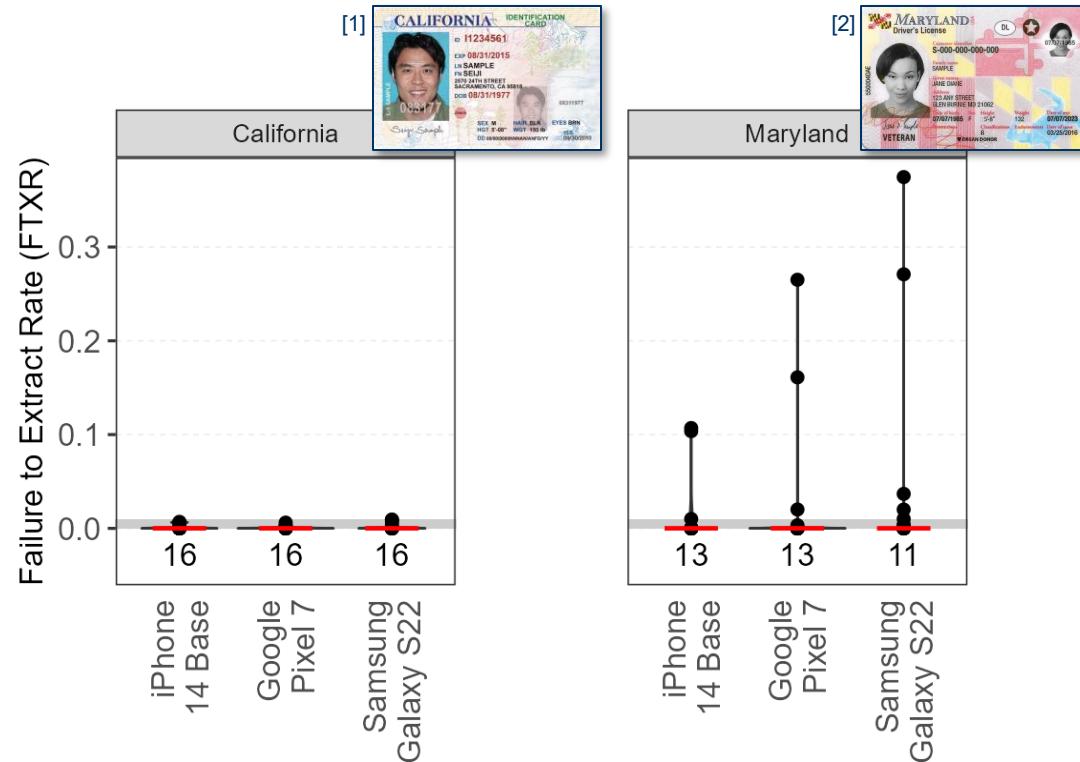
- **Failure to Extract Selfie (FTXR_{selfie})** – Proportion of selfie images that fail to extract a template for biometric matching
 - Threshold: 0.05, Goal: 0.01
- **Failure to Extract Document (FTXR_{doc})** – Proportion of document images that fail to extract a template for biometric matching
 - Threshold: 0.05, Goal: 0.01
- **False Non-Match Rate (FNMR)** – Proportion of ID document templates that do not match to templates from mated selfie images
 - Computed and reported at the supplied FMR = 1:1e4 setting
 - Threshold: 0.05, Goal: 0.01
- **False Match Rate (FMR)** – Proportion of non-mated templates that match – for validation of supplied thresholds
 - Threshold: 0.0005, Goal 0.0001 at the FMR = 1:1e4 setting
- **Disaggregated to examine robustness for:**
 - State of issue
 - Smartphone type
 - Demographics
 - FMR setting

RIVR set performance benchmarks for each metric:
Threshold – maximum high-performance error rate
Goal – target high-performance error rate

Selfie Match to Document Track Results

Methodology

- Selfie Match to Document systems were evaluated in combination with different smartphones and for different document states of issue
- Evaluation metrics were computed separately for different devices and document states of issue (where appropriate):
 - FTXR Selfie (3 smartphones = 3 values)
 - FTXR Documents (3 smartphones * 2 states = 6 values)
 - FNMR (3 smartphones * 2 states = 6 values)
 - FMR (3 smartphones = 3 values)
- Overall performance for each tested system was assessed based on the maximum error rate value observed for each metric (e.g., maximum FNMR across smartphone and document state)
- Aggregate industry performance was assessed based on the performance of different system combinations of smartphone and matching systems
 - 48 system combinations (16 systems * 3 smartphones)



Failure to Extract Rate - Selfies

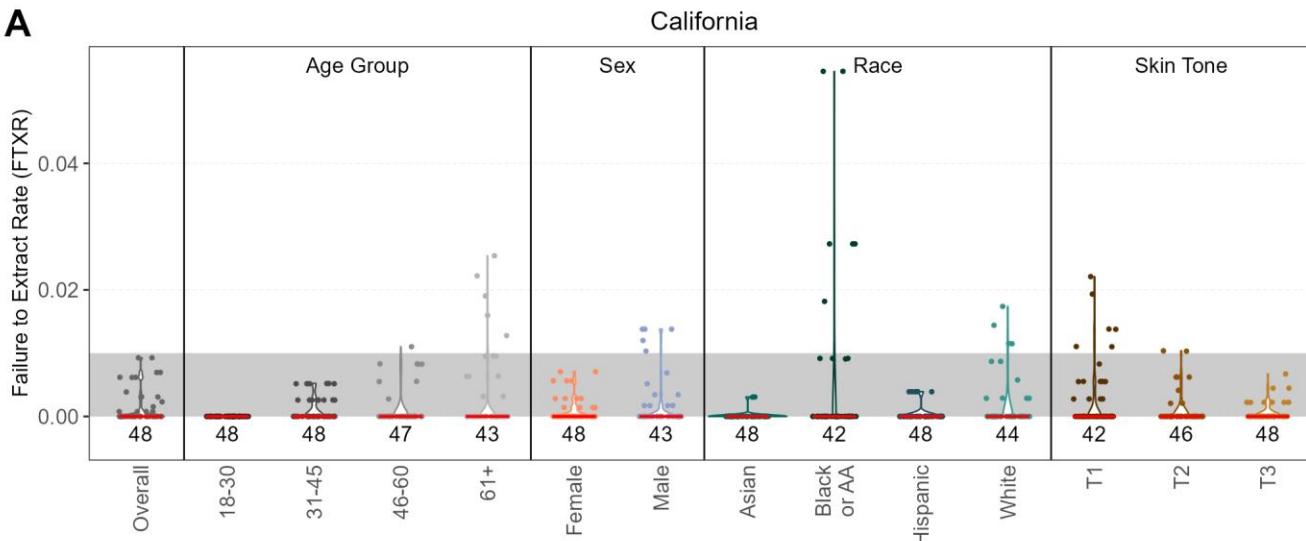
All 16 MTDSs had 0% FTXR_{selfie} for all collected selfies.

Failure to Extract Rate - Documents

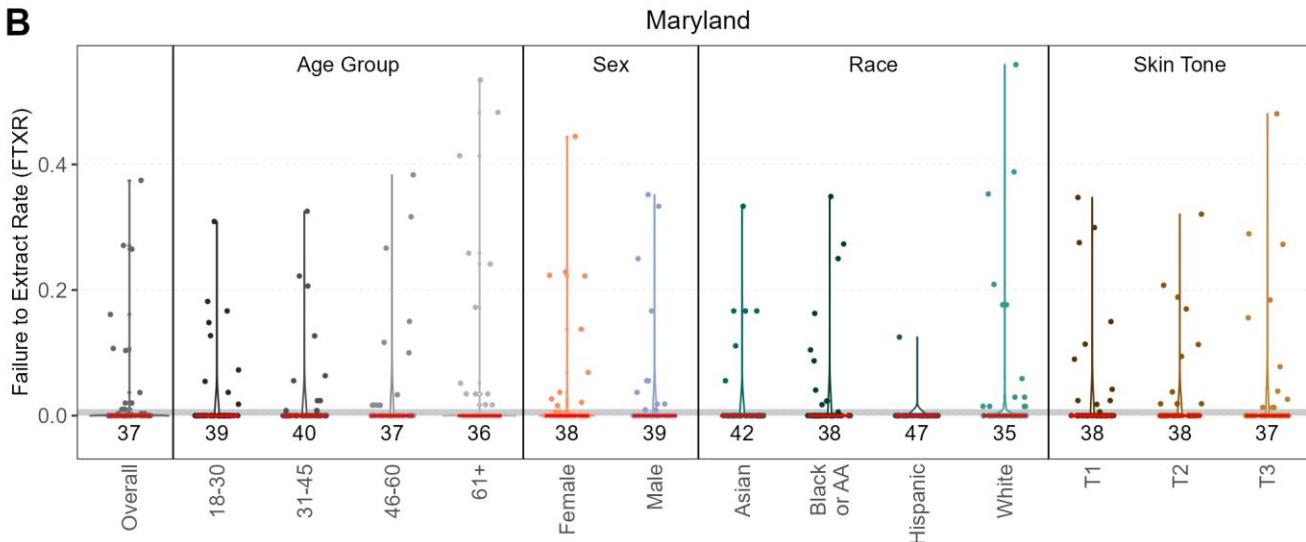
Points correspond to performance of combinations of smartphone, document state of issue, and MTDS. Gray shaded area indicates 1% or lower Document FTXR. Red lines show median system combination Document FTXR.

Numbers indicate how many system combinations, out of 16, met the 1% or lower Document FTXR goal.

[1] [https://commons.wikimedia.org/wiki/File:Identity_card_of_the_State_of_California,_sample_\(2010\).jpg](https://commons.wikimedia.org/wiki/File:Identity_card_of_the_State_of_California,_sample_(2010).jpg)


[2] <https://www.delmarvanow.com/story/news/local/maryland/2016/05/09/mva-unveils-new-maryland-licenses-ids/84147078/>

- **Most systems can extract templates from document images**
 - Median $FTXR_{doc}$ for all smartphones and states of issue was 0%
 - 14 of 16 MTDSs had $FTXR_{doc}$ below 5% across devices and states
 - 11 of 16 MTDSs had $FTXR_{doc}$ below 1% across devices and states
- **Minor impacts of document state of issue**
 - 43 of 48 system combinations had the same or lower $FTXR_{doc}$ on California IDs relative to Maryland IDs



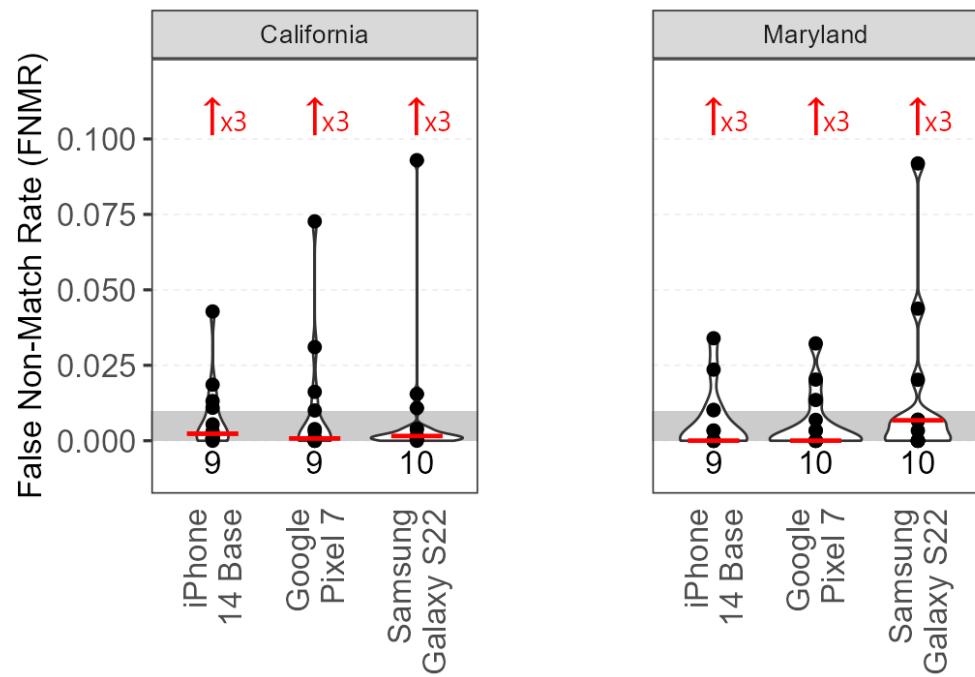
Demographics: Document Failure to Extract Rate

A

B

- **FTXR_{doc} was consistently low across demographics for majority of MTDSs across states and smartphones**
 - Median error rate for all groups was 0%
- 16 MTDSs were assessed for FTXR, making 48 MTDS-smartphone combinations

System combinations robust to demographics had consistently low error rates across all groups


Document State of Issue	FTXR _{doc} < 5% (threshold)	FTXR _{doc} < 1% (goal)
California	46	40
Maryland	40	34

Points correspond to performance of combinations of smartphone, document state of issue, and MTDS. Gray shaded area indicates 1% or lower Document FTXR. Red line shows median system combination Document FTXR. Numbers indicate how many system combinations, out of 48, met the 1% or lower Document FTXR goal.

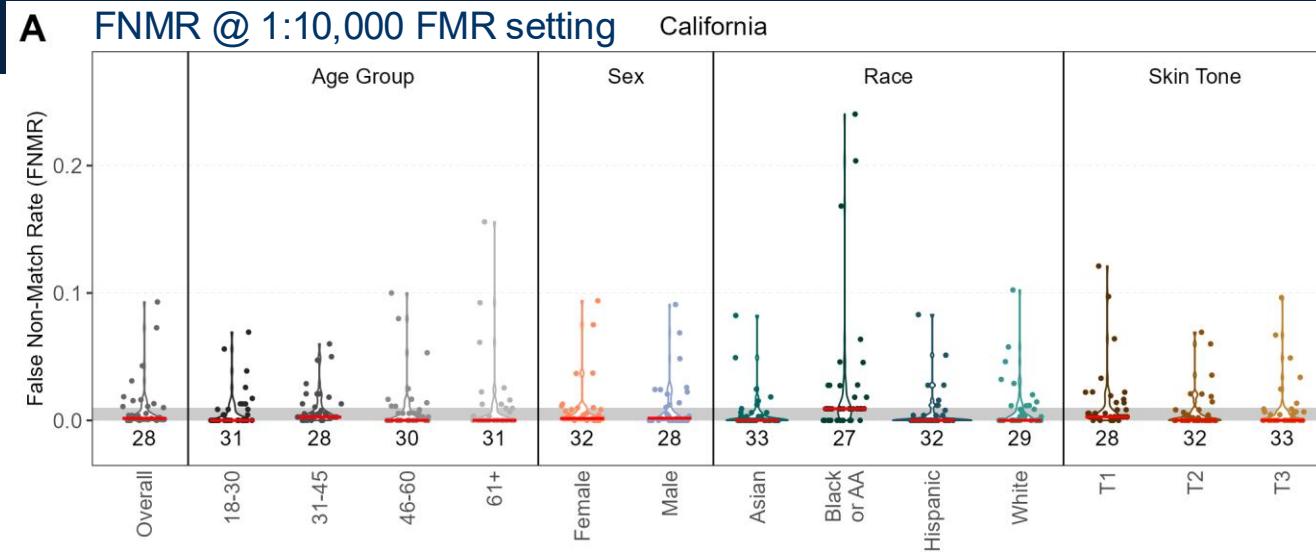
Science and
Technology

False Non-Match Rate

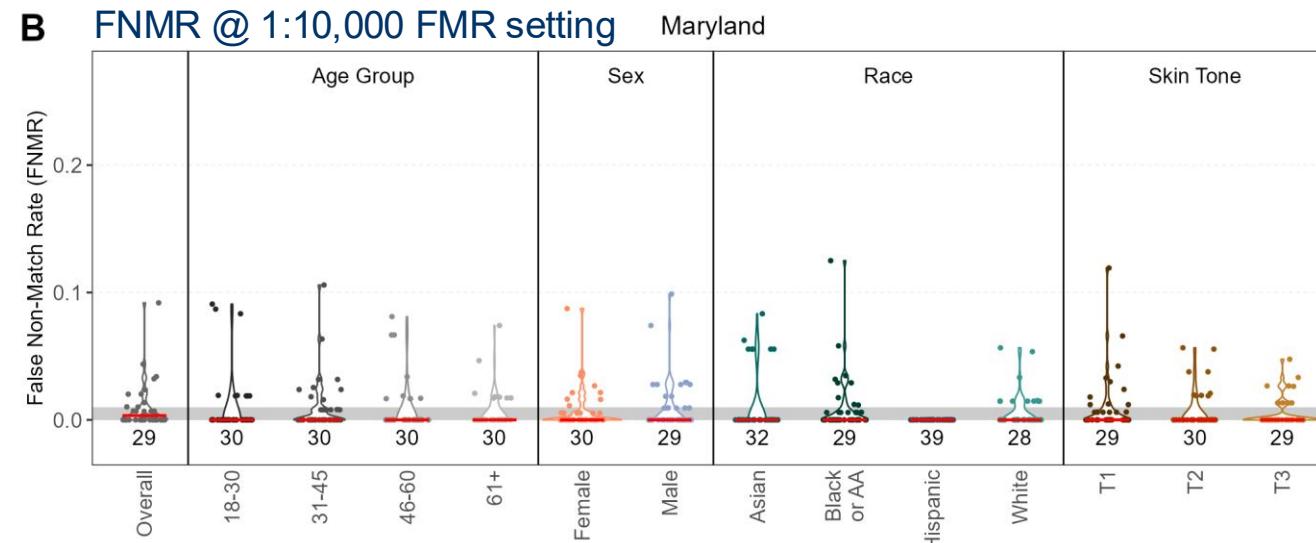
Points correspond to performance of combinations of smartphone, document state of issue, and MTDS. Gray shaded area indicates 1% or lower FNMR. Red lines show median system combination FNMR. Numbers indicate how many system combinations, out of 16, met the 1% or lower FNMR goal.

Numbers indicate how many system combinations, out of 16, met the 1% or lower FNMR goal.

*All volunteers shown here consented to have their images used in government presentations.



Illustrative only, not an actual identity document.


- **Most systems had low FNMR:**
 - 9 of 16 MTDSs maintained FNMR below 1% across all states and smartphones
 - 12 of 16 MTDSs maintained FNMR below 5% across all states and smartphones
- **Outliers had high error rates:**
 - 3 systems had FNMR > 50% on all 3 smartphones

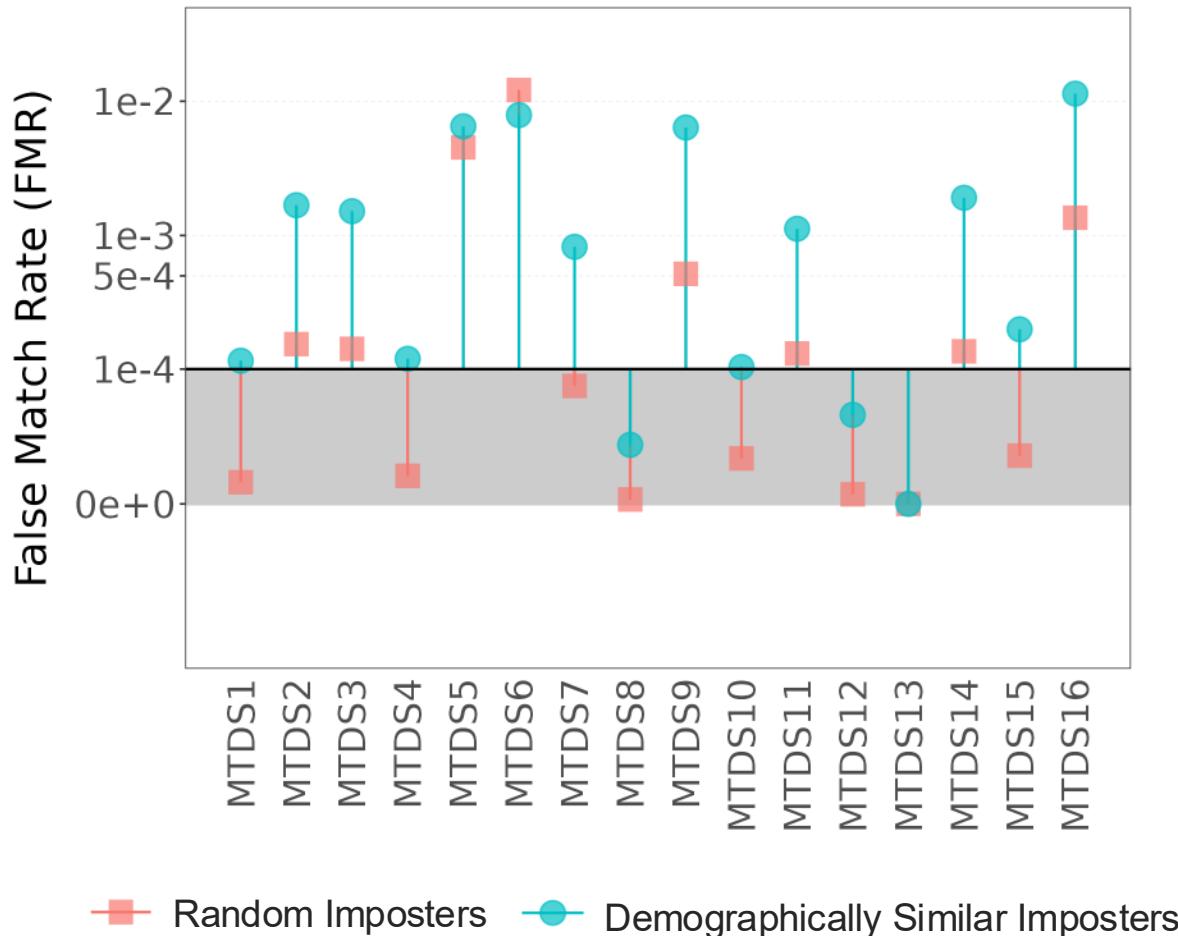
Demographics: False Non-Match Rate

- FNMR was calculated at the biometric threshold provided to achieve the RIVR goal FMR of 1:10,000
- FNMR was consistently low across demographics for most MTDSs across states and smartphones**
 - Median FNMR ranged from 0% to 0.92%
- FNMR robustness was examined for the 13 MTDSs with overall FNMR < 50%, making 39 MTDS-smartphone combinations

System combinations robust to demographics had consistently low error rates across all groups

Document State of Issue	FNMR < 5% (threshold)	FNMR < 1% (goal)
California	35	26
Maryland	30	21

Points correspond to performance of combinations of smartphone, document state of issue, and MTDS. Gray shaded area indicates 1% or lower FNMR. Red line shows median system combination FNMR. Numbers indicate how many system combinations, out of 39, met the 1% or lower FNMR goal.


False Match Rate

- FMR was independently calculated using the RIVR dataset by comparing selfie images of one person to an image of a document belonging to a different person (non-mated comparisons)
- FMR was calculated using the biometric thresholds provided with the SMTD systems configured to achieve the RIVR goal FMR of 1:10,000, consistent with NIST 800-63B
- FMR values were calculated for:
 - Random imposters
 - Demographically matched imposters^[1,2]
 - Comparisons between people of the same sex, same race, and similar age

[1] Howard, John J., Yevgeniy B. Sirotin, and Arun R. Vemury. "The effect of broad and specific demographic homogeneity on the imposter distributions and false match rates in face recognition algorithm performance." *2019 IEEE 10th international conference on biometrics theory, applications and systems (BTAS)*. IEEE, 2019.

[2] Grother, P. , Ngan, M. and Hanaoka, K., "Face Recognition Vendor Test Part 3: Demographic Effects, NIST Interagency/Internal Report (NISTIR)," National Institute of Standards and Technology, Gaithersburg, MD, [online], 2019, <https://doi.org/10.6028/NIST.IR.8280> (Accessed July 18, 2024)

Threshold Assessment: False Match Rate

- MTDSSs provided biometric thresholds to achieve the RIVR goal FMR of 1:10,000 (1e-4)
 - RIVR threshold FMR was 5:10,000 (5e-4)
- 3 of 16 MTDSSs did not configure their biometric thresholds appropriately for the RIVR dataset (FMR > 5e-4 for random imposters)
- 8 of 16 MTDSSs met the FMR goal for random imposters, and an additional 4 met the threshold
- 3 of 16 MTDSSs met the FMR goal for demographically similar imposters, and an additional 4 met the threshold
- For the median system, the error rate for demographically similar imposters was ~11 times higher than for random imposters

Remote Identity Validation Tech

Summary & Conclusions

Results Summary

- 31% of tested systems (MTDS 1, 4, 10, 12, and 15) met RIVR goals for all metrics
- 63% of tested systems met RIVR performance thresholds for all metrics
- 37% of tested systems were unable to meet the threshold for at least one metric


Conclusions

- Face recognition can perform well as part of the RIV process
 - Five (5 of 16) MTDSs met or exceeded the high-performance goal for all RIVR metrics
 - Ten (10 of 16) MTDSs were below the maximum high-performance error rate threshold for all RIVR metrics
 - Matching performance can be robust with respect to race, sex, and skin tone
 - Over half of the tested MDTSS met the FNMR high-performance goal for each of the 13 demographic groups examined
- However, the technical maturity of MTDSs can vary
 - Three (3 of 16) MTDSs had a greater than 50% FNMR, which is not appropriate for operational systems
 - Two (2 of 16) MTDSs had high document FTXR for Maryland IDs
- Some but not all MTDSs account for demographically similar imposters
 - Seven (7 of 16) MTDSs maintained acceptable FMRs for demographically similar imposters
- RIV systems should be validated to ensure they perform adequately for the intended users (i.e., on their devices, for their demographics, and for their documents)

Questions & Answers

- Contact information
 - peoplescreening@hq.dhs.gov
 - rivr@mdtf.org
- Visit our websites for additional information
 - To see additional work DHS S&T supports, visit www.dhs.gov/science-and-technology.
 - For information about this and other DHS S&T technology evaluations, visit <https://mdtf.org>.

